# PREFACE

13 14 15 16 17 18 19 20

Education is a process of human enlightenment and Empowerment. Recognizing the enormous potential of education, all progressive societies have committed themselves to the universalization of elementary education with a strong determination to provide quality education to all.

We are confident that the children in our school will enjoy mathematics, make mathematics a part of their life experience, pose and solve meaningful problems, understand the basic structure of mathematics with the help of this book.

The real essence of Mathematics lies in conquering the basics. With a motive of strengthening the basics in the budding minds, Varsity Education Management Pvt. Ltd. has brought out 'Techno for beginners - A bridge course in Mathematics'.

Varsity Education Management Pvt. Ltd. is the source of your success skills. The philosophy of this book is to integrate the study of life with innovative technology and co-relate it with student's self experiences from their day to day life.

The salient features of this book are -

2

Concepts are explained in a simple way with appropriate illustrations.

- Systematic approach in developing the concepts.
- Simple and lucid language to enhance the reading skills.
- "Aims" to give conceptual clarity.
- Work sheets" are provided to challenge the students.

You are your competitor. So, Dream, Achieve and Enjoy your success.

Constructive suggestions from teachers are welcome to make this book more student friendly.

With regards Department of Mathematics

# MATHEMATICS



n inpus propin proprint proprint propins pro-13 14 15 16 17 18 19 20

| S.No | Name of the Topic                                | Aim - No | Page. No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N   |
|------|--------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| I.   | PRIMARY NUMBER SYSTEM                            |          | 04 - 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *   |
|      | Natural Numbers and Whole Numbers                | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|      | Integers                                         | 2        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|      | Multiples and Factors                            | 3        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|      | Divisibility Rules                               | 4        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|      | H.C.F and L.C.M                                  | 5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|      | Fractions                                        | 6        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|      | Decimals                                         | 7        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| II.  | EXPONENTS AND POWERS                             |          | 25 - 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|      | Introduction to Algebra                          | 8        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|      | Exponents and Laws of Exponents                  | 9        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| III. | ALGEBRAIC EXPRESSIONS                            |          | 31 - 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|      | Types of Algebraic Expressions                   | 10 00    | In the first state of the second state of the |     |
|      | Factors, Coefficients and Degrees of Expressions | 10 00    | 100 170 170 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|      | Like terms ,Unlike terms and Substitution        | 12       | 03 05 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
| IV.  | GEOMETRY                                         |          | 37 - 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|      | Basic Geometrical concepts                       | 13       | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nan |
|      | Angles                                           | 14       | v-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0   |
|      | Triangles                                        | 15       | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
|      | Quadrilaterals                                   | 16       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 180 |
|      | Circles                                          | 17       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|      | Perimeter and Area                               | 18       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| V.   | PRACTICE OBJECTIVE TEST PAPER                    |          | 57 - 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |

# **PRIMARY NUMBER SYSTEM**

## NATURAL NUMBERS & WHOLE NUMBERS

# AIM - 1

 $\triangleright$ 

 $\geq$ 

 $\geq$ 

#### SYNOPSIS

#### NATURAL NUMBERS

Counting numbers 1, 2, 3, 4,.... are called natural numbers, denoted by N, i.e.  $N = \{1, 2, 3, 4,....\}$ . The smallest number in natural numbers is 1 and the greatest number can't be determined.

- The difference between any two consecutive natural numbers is 1.
- Siven any natural number, we can add 1 to that number to get its successor . **Example :** The successor of 7 is 7 + 1 = 8.

13 14 15 16 17 18 19

Given any natural number, we can subtract 1 from that number to get its predecessor. **Example :** The predecessor of 9 is 9 - 1 = 8.

The number of natural numbers between 'a' and 'b', where a < b is b - a - 1. The number of natural numbers from 'a' to 'b', where a < b is b - a + 1.

#### WHOLE NUMBERS

The natural numbers along with zero are called whole numbers, denoted by W, i.e.W =  $\{0, 1, 2, 3, \dots\}$ 

The smallest whole number is '0' and the greatest number can not be determined. All natural numbers are whole numbers.

The difference between any two consecutive whole numbers is '1'.

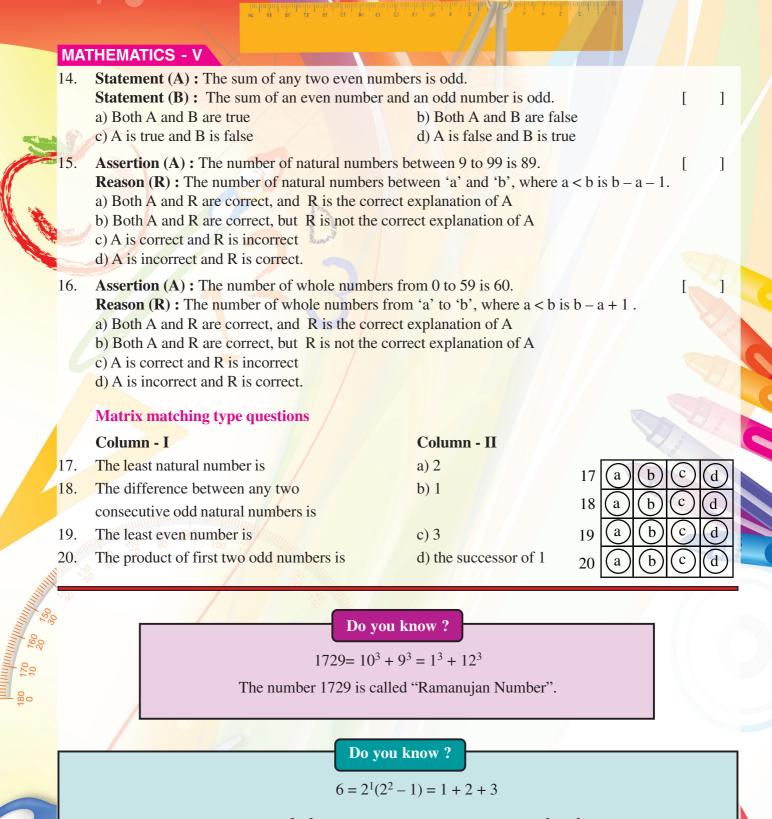
#### **EVEN NUMBERS**

- The natural numbers which are exactly divisible by '2' are known as even numbers denoted by 'E' i.e.,  $E = \{2, 4, 6, ...\}$
- The difference between any two consecutive even numbers is '2'. Example : 8 6 = 2,
- The sum of any two even numbers is even.
- The product of any two even numbers is even.

#### **ODD NUMBERS**

- The natural numbers which when divided by 2, leaves the remainder 1 are known as odd numbers, denoted by 'O'. i.e.,  $O = \{1,3,5,\dots\}$ 
  - The difference between any two consecutive odd numbers is '2'. Example : 7 5 = 2.The sum of two odd numbers is even.Example : 3 + 5 = 8 iThe product of two odd numbers is odd.Example :  $5 \times 7 = 35$ 
    - The sum of an even and an odd numbers is odd.
  - The product of an even and an odd numbers is even.
- **Example :** 3 + 5 = 8 is even **Example :**  $5 \times 7 = 35$  is odd. **Example :** 4 + 5 = 9 is odd. **Example :**  $4 \times 5 = 20$  is even.

**Example :** 2 + 4 = 6 is even.


**Example :**  $4 \times 6 = 24$  is even.

Carl De

## WORK SHEET - 1

| Straight Ob | jective type | e questions |
|-------------|--------------|-------------|

|      | Straight Objective typ                     | e questions                                            |                                     |                      |                   |
|------|--------------------------------------------|--------------------------------------------------------|-------------------------------------|----------------------|-------------------|
| 1.   | The set of natural numb<br>a) W            | ers is denoted by<br>b) N                              | c) Q                                | d) R                 |                   |
| 2.   | The successor of greates<br>a) 999         | st 3 digited number is<br>b) 1999                      | c) 1000                             | d) 998               |                   |
| 3.   | The predecessor of 555 a) 556              | is<br>b) <mark>554</mark>                              | c) 553                              | d) 560               | 1                 |
| 4.   | The set of whole numbe<br>a) N             | ers is represented by b) Z                             | c) W                                | d) Q                 | ]                 |
| 5.   | The greatest whole num<br>a) 100000        | ber in the set of whole nu<br>b) 999999                | mbers is<br>c) 0                    | d) can't be determin | ]<br>ed           |
| 6.   | The difference between a) 0                | any two consecutive who<br>b) 1                        | le numbers is $c) -1$               | d) 2                 | 1                 |
| 7.   | The natural numbers alo<br>a) whole numbes | ong with zero are called<br>b) even numbers            | c) odd numbers                      | d) integers          | 1                 |
| 8.   | The natural numbers what a) an odd numbers | nich are exactly divisible b<br>b) an even numbers     | by 2 are called<br>c) prime numbers | d) whole numbers     | 1                 |
| 9.   | From the table a set of o                  | odd numbers is                                         |                                     | 100 90 80 80 80      |                   |
| ξ ΓF | a) {1, 2, 3, 5}                            |                                                        |                                     |                      | annihina annihina |
|      | b) {1, 3, 5, 9, 17}                        | 1 8 12                                                 |                                     |                      |                   |
|      | c) $\{2, 4, 8, 2\}$                        | 5 2 4                                                  |                                     |                      | 002               |
|      | d) {8,9,12,17}                             | 9 17 3                                                 |                                     |                      | 000 Teo           |
| 10.  | The sum of first five wh                   |                                                        |                                     | ſ                    |                   |
|      | a) 15                                      | b) 14                                                  | c) 12                               | d) 10                | 180               |
|      | One or more than one                       | correct answer type Qu                                 | estions                             |                      |                   |
| 11.  | Among the following an a) 4                | n even number is<br>b) 18                              | c) 21                               | d) 39                | ]                 |
| 12.  |                                            | ral numbers from 1 to 50                               |                                     | ]                    | ]                 |
| 0    | a) 50                                      | b) 25                                                  | c) 24                               | d) the predecessor o | f 26              |
| 13.  |                                            | eatest natural number can<br>tural numbers are whole n | umbers.                             |                      |                   |
|      | a) Both A and B are true                   |                                                        | b) Both A and B are fal             |                      |                   |
|      | c) A is true and B is fals                 |                                                        | d) A is folgo and R is tru          | 10                   |                   |
|      | c) It is true and D is fais                |                                                        | d) A is false and B is tru          | ic                   |                   |



$$28 = 2^2(2^3 - 1) = 1 + 2 + 3 + 4 + 5 + 6 + 7 = 1^3 + 3^3$$

$$496 = 2^4 (2^5 - 1) = 1 + 2 + 3 + \dots + 29 + 30 + 31 = 1^3 + 3^3 + 5^3 + 7^3$$

 $8128 = 2^{6} (2^{7} - 1) = 1 + 2 + 3 + \dots + 125 + 126 + 127 = 1^{3} + 3^{3} + 5^{3} + 7^{3} + 9^{3} + 11^{3} + 13^{3} + 15^{3}$ 

6

## INTEGERS

14 15 16 17 18 19 20

## AIM - 2

#### **SYNOPSIS**

 $\geq$ 

#### **INTEGERS**

- "The set containing the positive numbers 1, 2, 3, 4, ... and the negative numbers -1, -2, -3, ... together with zero is called the set of integers", denoted by Z, i.e.  $Z = \{...., -3, -2, -1, 0, 1, 2, 3...,\}$ .
- The set of negative numbers along with the set of whole numbers is known as integers.
- There are infinite positive numbers to the right of zero and infinite negative numbers to the left of zero.
- The whole number '0' is neither a positive integer nor a negative integer.
- $\{1, 2, 3, 4, ...\}$  is called the set of positive integers, denoted by Z + or N.
- $\{..., -4, -3, -2, -1\}$  is called the set of negative integers, denoted by Z<sup>-</sup>.
- {0, 1, 2, 3, 4,...} is called the set of non-negative integers, denoted by W.
- $\{..., -3, -2, -1, 0\}$  is called the set of non positive integers.

The numbers  $-1, -2, -3, \dots$  are called additive inverses of  $1, 2, 3 \dots$ .

#### **ADDITION OF TWO INTEGERS**

The sum of two positive integers is always a positive integer, obtained by taking the sum of the numerical values of the addends.

**Example :** (+2) + (+3) = +5.

The sum of two negative integers is always a negative integer, obtained by taking the sum of the numerical values of the addends.

**Example :** (-2) + (-3) = -5

For adding a positive and a negative integer, we first find the difference between their numerical values and assign the sign of the integer having greater magnitude.

**Example :** (+4) + (-3) = (+1) + (+3) + (-3) = +1

#### SUBTRACTION OF TWO INTEGERS

- For If 'a' and 'b' are two integers, then a b is equal to a + (-b).
- If we subtract a number from another number, then we add the additive inverse of second number to the first number.

**Example :** (+5) - (+7) = 5 + (-7) = -2;

$$9 - (-5) = 9 + (+5) = 14$$

#### **MULTIPLICATION OF INTEGERS**

The repeated addition is called multiplication.

**Example : i)**  $2 \times 3 = 2 + 2 + 2 = 6$  i.e., 2 is added 3 times.

ii)  $(-2) \times 3 = (-2) + (-2) + (-2) = -6$  i.e., (-2) is added 3 times.

The product of two positive integers is a positive integer. **Example :**  $(+ 6) \times (+ 7) = + 42$ The product of a negative and a positive integer is a negative integer.

11 12 13 14 15 16 17 18 19 20

**Example :**  $(-3) \times (+4) = -12$ 

The product of two negative integers is a positive integer.

**Example :** i)  $(-3) \times (-6) = +18$ ,

ii)  $(-17) \times (-4) = +68$ 

## **DIVISION OF INTEGERS**

The repeated subtraction is called division **Example :**  $12 \div 4$  12 - 4 = 8 8 - 4 = 4 4 - 4 = 04 is subtracted 3 times from 12

 $\therefore 12 \div 4 = 3.$ 

Division of an integer by zero is not defined i.e.,  $\frac{x}{0}$  is not defined, where  $x \in Z$ .

## WORK SHEET - 2

#### Straight objective type Questions

8

| 1      |     | The set of integers is de              | noted by                                     |                       |                          |
|--------|-----|----------------------------------------|----------------------------------------------|-----------------------|--------------------------|
| IIIIII | 130 | a) N                                   | b) W                                         | c) Z                  | d) Q                     |
| 2      | 20  | The sum of any two pos<br>a) positive  | itive integers is<br>b) negative             | c) zero               | [ ]<br>d) 1              |
| ≈ 3    | 5.  | The integer which is great $a) - 9$    | ater than any negative into<br>b) – 1        | eger is<br>c) 0       | d) can't say             |
| 4      |     | The repeated addition w<br>a) division | ith the same number is cal<br>b) subtraction | lled<br>c) difference | [ ]<br>d) multiplication |
| 5      | j.  | 21 + 3 + (-9) - 6 =<br>a) 39           | b) 27                                        | c) 9                  | [ ]<br>d) – 18           |
| 6      | 5.  | -5 - (-17) + (11) + 15<br>a) 4         | 5 =<br>b) 38                                 | c) 47                 | [ ]<br>d) 16             |
| 7      |     | The additive inverse of 2              | 2015 is                                      |                       | [ ]                      |
| 1      |     | a) 2014                                | b) 2016                                      | c) $\frac{1}{2015}$   | d) – 2015                |
| C 8    |     | $(-9) \times 5 \times 6 =$<br>a) 270   | b) – 270                                     | c) – 99               | [ ]<br>d) 2              |

|     |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | MATHEMATICS - V                |                       |
|-----|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------|-----------------------|
| 9.  | The repeated subtrac                           | tion with the same num                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ber is called                                          | [ ]                            |                       |
|     | a) multiplication                              | b) product                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c) division                                            | d) addition                    |                       |
| 10. | 119 ÷ 17 =                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                | and the second second |
|     | a) 102                                         | b) 136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | c) 7                                                   | d) 9                           |                       |
|     | One or more than o                             | one correct answer typ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e Questions :                                          |                                |                       |
| 11. | The set {0,1,2,3,4                             | } is called the set of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A A A A A A A A A A A A A A A A A A A                  |                                | -                     |
|     | a) positive integers                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | b) non - negative in                                   |                                | đ.                    |
|     | c) whole numbers                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d) non - positive in                                   | itegers                        |                       |
| 12. |                                                | integers, then $a - b =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |                                | -                     |
| 10  | a) $a + (-b)$                                  | b) b – a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c) a – (+ b)                                           | d) $a - (-b)$                  |                       |
| 13. |                                                | smallest integer in the second secon | et of integers is zero.<br>s called the set of non pos | sitive integers                |                       |
|     | a) Both A and B are                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | b) Both A and B a                                      |                                |                       |
| 3.0 | c) A is true, B is false                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d) A is false, B is t                                  | rue                            |                       |
| 14. |                                                | number of positive inte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        | [ ]                            |                       |
|     |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | le numbers is called Integers. |                       |
|     | a) Both A and B are<br>c) A is true and B is : |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | b) Both A and B and A is false and B                   |                                |                       |
| 15. | Assertion(A) : (-18                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        |                                |                       |
| 10. |                                                | oduct of any two negativ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e integers is positive.                                |                                |                       |
|     | a) Both A and R are                            | correct, and R is the co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rrect explanation of A                                 |                                |                       |
|     |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e correct explanation of A                             |                                |                       |
|     | c) A is correct and R                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d) A is incorrect an                                   | id R is correct.               | 1111                  |
| 16. | Assertion(A): $\frac{0}{9999}$                 | -=0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        |                                | 02                    |
|     |                                                | vision of '0' by any integ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ger except '0' is 0.                                   |                                | 60                    |
|     |                                                | correct, and R is the cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        |                                | 24                    |
|     |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | correct explanation of A                               |                                | OF                    |
|     | c) A is correct and R                          | is incorrect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d) A is incorrect ar                                   | nd R is correct.               | 0                     |
|     | Matrix Matching ty                             | pe Questions :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                |                       |
|     | Column - I                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Column - II                                            | 17 (a) (b) (c) (d)             |                       |
|     | Neither positive nor                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a) not defined                                         | 18 (a) (b) (c) (d)             |                       |
| 18. | The least positive int                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | b) – 1                                                 | 19 a b c d                     | -                     |
| 19. | The division of an in                          | teger by zero is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c) 1                                                   | 20 (a) (b) (c) (d)             |                       |
| 20. | 2015 + (-2016) =                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d) 0                                                   |                                |                       |
|     |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Try This                                               |                                |                       |
|     | Is it possible to find t                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ive integer and least nega                             | tive integer ? Why?            | 5                     |
|     |                                                | ne sum of greatest posit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ive integer and least nega                             | arve mueger ? writy ?          | 4                     |

9

16 17 18 19 20

# Varsity Education Management Pvt. Ltd.

## **MULTIPLES AND FACTORS**

## AIM - 3

#### SYNOPSIS

#### **MULTIPLE**

- The product of a number and counting numbers are known as the multiples of that number. Multiples of a given number are all those numbers which are exactly divisible by the given number. Example : Multiples of 3 are 3, 6, 9, ... and each of these numbers is exactly divisible by 3.
- Every multiple of a number is greater than or equal to that number.
- The number of multiples of a given number is infinite.
- Every number is a multiple of itself and it is the least multiple of that number.

12 13 14 15 16 17 18 19 20

#### FACTOR

>

- If a number 'x' divides another number 'y' exactly, then we say that 'x' is a factor of 'y'. Example : 6 divides 18 exactly 6 is a factor of 18.
- The numbers that are multiplied to get the product are called the factors of the product.
- The number of factors of a given number is finite.
- When two or more numbers are multiplied, then each number is a factor of that product.
- Every factor of a number is an exact divisor of that number.
- Every factor of a number is less than or equal to that number.
- The number of factors of a given number is finite.
  - The gretest factor of a given number is the number itself.

#### **PERFECT NUMBER**

A number in which sum of all its factors is equal to twice the number is called a perfect number.

**Example 1 :** The sum of the factors of  $6 = 1 + 2 + 3 + 6 = 12 = 2 \times 6$ .

The sum the of factors of 6 is twice the number, so 6 is a perfect number.

**Example 2 :** The sum of the factors of  $28 = 1 + 2 + 4 + 7 + 14 + 28 = 56 = 2 \times 28$ .

The sum of the factors of 28 is equal to twice the given number, so 28 is a perfect number.

#### **PRIME NUMBER**

The natural number greater than 1 is said to be a prime number, if it has only two factors 1 and itself.
Example: 2, 3, 5, 7, 11, ...

The set of prime numbers is a subset of set of natural numbers.

If  $2^{k} - 1$  is a prime number then  $2^{k-1}(2^{k} - 1)$  is a perfect number.

#### **CO- PRIMES**

10

The two positive integers are said to be co-primes or relatively primes, if they do not have any common factor other than 1.

**Example :** (5, 9), (25,18), (6,23), .... are pairs of co- primes.

#### **PRIME FACTOR**

>

If a factor of a given number is prime, then the factor is called a prime factor. Example : The factors of 30 are 1, 2, 3, 5, 6, 10, 15 and 30. The prime factors are 2, 3 and 5.

#### **TWIN PRIMES**

A pair of prime numbers that differs by 2 are called twin primes. **Example :** The prime numbers 3 and 5 differ by 2, so(3, 5) is a pair of twin primes.

#### **COMPOSITE NUMBER**

A natural number which is neither 1 nor a prime is called a composite number (or) a natural number having atleast three factors is called a composite number.

16 17 18 19 20

**Example :** 4 is a composite number. (: 1, 2, 4 are factors of 4).

The first natural number 1, being divisible by only one factor (by itself) is neither a prime number nor a composite number.

#### SQUARE OF A NUMBER

The square of a number is the product of a number by itself. For a given number 'a', the square of 'a' is  $a \times a$ , denoted by  $a^2$ . Example : square of  $9 = 9 \times 9 = 81$ .

#### **PERFECT SQUARE OR SQUARE NUMBER :**

A natural number is called a perfect square or a square number, if it is the square of any natural number. Example: 1, 4, 9, 25, 36, ... are perfect squares.

## WORK SHEET - 3

#### **Straight objective type Questions :**

| 1.  | The multiplication of a a) factor             | a given number with natur<br>b) multiple    | al numbers is called its c) root | d) square     | [ | ] | 26 130 130 130 130 130 130 130 130 130 130 |
|-----|-----------------------------------------------|---------------------------------------------|----------------------------------|---------------|---|---|--------------------------------------------|
| 2.  | The first four multiples<br>a) 12, 18, 24, 30 | s of 6 are<br>b) 6, 12, 24, 36              | c) 6, 12, 18, 24                 | d) 1, 2, 3, 6 | [ | ] | 077 071<br>077 081                         |
| 3.  | The factor of every numbers a) 0              | mber is<br>b) 1                             | c) 2                             | d) 3          | ] | ] |                                            |
| 4.  | From the table not a pr                       | ime number is                               |                                  |               | [ | ] |                                            |
| 1   | a) 2                                          | $19 \bigwedge_{3}$                          |                                  |               |   |   |                                            |
|     | b) 3                                          | 5 $6$                                       |                                  |               |   |   |                                            |
|     | c) 6                                          | $\begin{pmatrix} 3 & 7 \\ 11 \end{pmatrix}$ |                                  |               |   |   |                                            |
|     | d) 11                                         |                                             |                                  |               |   |   |                                            |
| 5.  | Among the following $z$                       |                                             | .) 17                            | Dhadaah       | ] | ] | ST PHE                                     |
|     | a) 8                                          | b) 9                                        | c) 17                            | d) both a, b  |   |   | - COL                                      |
| Var | sity Education Mana                           | igement Pvt. Ltd.                           |                                  |               |   |   |                                            |
|     |                                               |                                             |                                  |               |   |   |                                            |

#### 12 13 14 15 16 **1**7 18 **1**9 20 **MATHEMATICS - V** One or more than one correct ansswer type Questions : Among the following a pair of co - primes is 6. 1 a) (3,14) b) (5,22)c) (3.12)d) (4,32) Among the following a pair of twin primes is 1 a) (2,3)b) (3.5)c) (17.19)d) (41,43)**Statement(A)**: Every multiple of a number is greater than or equal to the number. 8. 1 Statement(B): The greatest factor of a given number is the number itself. a) Both A and B are true b) Both A and B are false c) A is true. B is false d) A is false. B is true 9. Statement (A): A number which has '1' and itself as its only factors is called a prime number. Statement (B): The smallest multiple of a given number is the number itself. ] a) Both A and B are true b) Both A and B are false c) A is true and B is false d) A is false and B is true Assertion(A): The numbers 6, 28 and 496 are called perfect numbers. 10. **Reason**(**R**): If the sum of all the factors of a given number except that number is equal to the twice of the number, then the number is called a perfect number. a) Both A and R are correct, and R is the correct explanation of A b) Both A and R are correct, but R is not the correct explanation of A c) A is correct and R is incorrect d) A is incorrect and R is correct. Assertion(A): $(-11) \times (-11) = (-11)^2 = 121$ and $16 \times 16 = (16)^2 = 256$ . 11. **Reason**(**R**): The square of a number is the product of a number by itself. a) Both A and R are correct, and R is the correct explanation of A b) Both A and R are correct, but R is not the correct explanation of A c) A is correct and R is incorrect d) A is incorrect and R is correct. **Matrix Matching type Questions :**

| 202 |     | Column - I                         | Column - II | 12 (a) (b) (c) |
|-----|-----|------------------------------------|-------------|----------------|
| 10  | 12. | The least prime number is          | a) 1        | 13 a b         |
| D   | 13. | The least composite number is      | b) 2        |                |
|     | 14. | The least perfect number is        | c) 4        |                |
|     | 15. | The least perfect square number is | d) 6        | 15 (a) (b) (b) |

Do You Know ?

The pairs of twin primes between 1 to 100

 $(3,5)\ ;\ (5,7)\ ;\ (11,13)\ ;(17,19)\ ;\ (29,\ 31)\ ;\ (41,43)\ ;\ (59,61)\ ;\ (71,73).$ 

## **4. DIVISIBILITY RULES**

## AIM - 4

#### **SYNOPSIS**

#### **DIVISIBILITY BY '2'**

A natural number is divisible by '2', if and only if the digit in its unit's place is either 2 or 4 or 6 or 8 or 0. **Example :** 1) 59628 is divisible by 2. (: the unit's digit is 8).

2) 789403 is not divisible by 2.

 $1 \quad 2 \quad 3 \quad 4 \quad 5$ 

(:: the unit's digit is 3).

13 14 15 16 17 18 19 20

#### **DIVISIBILITY BY '3'**

A natural number is divisible by '3', if and only if the sum of its digits is divisible by 3. **Example :** 1) 524781 is divisible by 3.  $(\because$  the sum of digits = 5 + 2 + 4 + 7 + 3

- 2) 79124 is not divisible by 3.
- (: the sum of digits = 5 + 2 + 4 + 7 + 8 + 1 = 27).

**MATHEMATICS - V** 

(:: the sum of digits = 7 + 9 + 1 + 2 + 4 = 23).

#### **DIVISIBILITY BY '4'**

A natural number is divisible by '4', if and only if the number formed by the last two digits is divisible by 4 or last two digits in the given number are zeroes.

**Example :** 1) 35056 is divisble by 4.

- 2) 946126 is not divisible by 4.
- 3) 1200 is divisible by 4.
- (:: 56 is divisible by 4).
- (:: 26 is not divisible by 4).
- ( $\cdots$  the last two digits of the number are zeroes).

#### **DIVISIBILITY BY '5'**

A natural number is divisible by '5', if and only if the last digit is either 0 or 5. **Example :** 1) 6430 is divisible by 5. (: the unit's digit is 0). 2) 2347 is not divisible by 5. (: the unit's digit is neither 0 nor 5).

#### **DIVISIBILITY BY '6'**

A natural number is divisible by '6', if and only if it is divisible by both 2 and 3.**Example :** 1) 2070 is divisible by 6.(:: the number is divisible by both 2 and 3).2) 136976 is not divisible by 6.(:: the number is not divisible by 3).

## DIVISIBILITY BY '8'

A natural number is divisible by '8', if and only if the last three digits of the given number is divisible by 8. **Example :** 1) 36792 is divisible by 8. ( $\cdot$ : 792 is divisible by 8).

2) 901674 is not divisible by 8.

(:: 674 is not divisible by 8).

#### DIVISIBILITY BY '9'

A natural number is divisible by '9', if and only if the sum of its digits is divisible by 9.

- **Example :** 1) 20691 is divisible by 9.
- (:: the sum of digits = 2 + 0 + 6 + 9 + 1 = 18).
- 2) 872645 is not divisible by 9.
- (:: the sum of digits = 2 + 0 + 6 + 9 + 1 = 18).
- by 9. (:: the sum of digits = 8 + 7 + 2 + 6 + 4 + 5 = 32)

#### **DIVISIBILITY BY '10'**

A natural number is divisible by '10', if and only if the last digit is 0.

13 14 15 16 **1**7 18 **1**9 20

**Example :** 1) 2560 is divisible by 10.

2) 3765 is not divisible by 10.

(:: the unit's digit is 0).

(:: the unit's digit is not 0).

#### DIVISIBILITY BY '11'

A natural number is divisible by '11', if and only if the difference of the sum of the numbers obtained on adding the alternating digits of the number separately is divisible by 11.

**Example :** 1) 137269 is divisible by 11.

(:: sum of the digits in odd places = 1 + 7 + 6 = 14. sum of the digits in even places = 3 + 2 + 9 = 14.

difference =  $14 \ 14 = 0$  is divisible by 11)

## WORK SHEET - 4

#### **Straight objective type Questions :**

|          |    | 5 5 71                                                                                                                                                                                        |                                                                                                   |                                                         |                                                 |  |  |  |
|----------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------|--|--|--|
|          | 1. | Among the following a a) 123                                                                                                                                                                  | number divisible by 3 is<br>b) 1234                                                               | c) 2345                                                 | d) 4567                                         |  |  |  |
|          | 2. | Among the following a a) 546                                                                                                                                                                  | number divisible by 4 is b) 566                                                                   | c) 576                                                  | d) 586                                          |  |  |  |
|          | 3. | A number divisible by a) 2352                                                                                                                                                                 | 9is<br>b) 6750                                                                                    | c) 6668                                                 | d) 8985                                         |  |  |  |
| ,ii      |    | A number not divisible<br>a) 40                                                                                                                                                               | by 10 is<br>b) 100                                                                                | c) 9990                                                 | d) 999                                          |  |  |  |
| 300 1111 | 5. | A number divisible by a) 555                                                                                                                                                                  | 5 is<br>b) 1000                                                                                   | c) 1506                                                 | d) both a,b                                     |  |  |  |
| 0>       |    | One or more than one                                                                                                                                                                          | e correct answer type Qu                                                                          | estions :                                               |                                                 |  |  |  |
|          | 6. | Among the following a a) 6                                                                                                                                                                    | number dvisible by 2 is<br>b) 20                                                                  | c) 88                                                   | d) 65                                           |  |  |  |
|          | 7. | Among the following a a) 728                                                                                                                                                                  | number divisible by 12 is<br>b) 684                                                               | c) 912                                                  | [ ] ] ]                                         |  |  |  |
|          | 8. | Statement(B) : A num                                                                                                                                                                          | ther is divisible by 3, if the<br>ber is divisible by 4, if the r<br>hits digits are both zeroes. | -                                                       | ble by 3. []<br>s and units digits is divisible |  |  |  |
|          | C  | a) Both A and B are tru<br>c) A is true, B is false                                                                                                                                           | 0                                                                                                 | b) Both A and B are false<br>d) A is false, B is true   | se                                              |  |  |  |
|          | 9. | <ul> <li>Statement (A) : The numbers 9232 and 18000 are not divisible by 8.</li> <li>[]]</li> <li>Statement (B) : If a number is divisible by 3 and 5, then it is divisible by 15.</li> </ul> |                                                                                                   |                                                         |                                                 |  |  |  |
| (        |    | a) Both A and B are tru<br>c) A is true and B is fal                                                                                                                                          |                                                                                                   | b) Both A and B are false<br>d) A is false and B is tru | le                                              |  |  |  |
| Ž        | 14 |                                                                                                                                                                                               |                                                                                                   | Varsity Education                                       | Management Pvt. Ltd.                            |  |  |  |
|          |    |                                                                                                                                                                                               |                                                                                                   |                                                         |                                                 |  |  |  |

| 10. | Assertion(A) : The number 578412 is a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | divisible by 6.                                                                                                                                                          | MATHEMATICS                                                     |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|--|
|     | <b>Reason</b> ( <b>R</b> ) : If a number is divisible by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                          | by 6.                                                           |  |  |
|     | a) Both A and R are correct, and R is the set of the se | -                                                                                                                                                                        |                                                                 |  |  |
|     | b) Both A and R are correct, but R is not concerned and R is incorrect and R is incorrect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ot the correct explanation of<br>d) A is incorrect                                                                                                                       |                                                                 |  |  |
|     | Assertion(A) : The number 37345 is no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                          |                                                                 |  |  |
|     | <b>Reason(R):</b> If the sum of the alternate of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ligits of a number from right                                                                                                                                            | to left is equal to sum of the then that number is divisible by |  |  |
|     | a) Both A and R are correct, and R is the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                        |                                                                 |  |  |
|     | b) Both A and R are correct, but R is n<br>c) A is correct and R is incorrect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ot the correct explanation of d) A is incorrect                                                                                                                          |                                                                 |  |  |
|     | Matrix Matching type Questions :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                          |                                                                 |  |  |
|     | Column - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Column - II                                                                                                                                                              |                                                                 |  |  |
|     | 769812 is divisible by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a) 2                                                                                                                                                                     | 12 (a) (b) (c) (d)                                              |  |  |
|     | 444444 is divisible by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a) 2<br>b) 3                                                                                                                                                             | 13 (a) (b) (c) (d)                                              |  |  |
|     | 333333 is divisible by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c) 4                                                                                                                                                                     | 14 (a) (b) (c) (d)                                              |  |  |
|     | 37806 is divisible by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d) 6                                                                                                                                                                     | 15 a b c d                                                      |  |  |
|     | Is 27720 is divisible by fin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rst eleven natural numbers (o                                                                                                                                            | r) not ? Why ?                                                  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          | ~~                                                              |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Do you Know                                                                                                                                                              |                                                                 |  |  |
|     | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Divisibility by '7'                                                                                                                                                      |                                                                 |  |  |
|     | A number of the form $a_k a_{k-1} a_{k-2} \dots a_5 a_4 a_3 a_2 a_1 a_0$ is divisible by '7' if and only if,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                          |                                                                 |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                          | isible by 7 if and only                                         |  |  |
|     | A number of the form $a_k a_{k-1} a_{k-2} a_2 a_1 a_0 - a_5 a_4 a_3 + a_8 a_7 a_6 - \dots a_k a_{k-1} a_k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $_{-2}$ is divisible by 7                                                                                                                                                |                                                                 |  |  |
|     | $a_2a_1a_0 - a_5a_4a_3 + a_8a_7a_6 - \dots a_ka_{k-1}a_k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sub>-2</sub> is divisible by 7<br>( <b>OR</b> )                                                                                                                         |                                                                 |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>-2 is divisible by 7</li> <li>(OR)</li> <li>(OR)</li> <li>(OR)</li> </ul>                                                                                       | nits digit from the remaining a                                 |  |  |
|     | $a_2a_1a_0 - a_5a_4a_3 + a_8a_7a_6 - \dots a_ka_{k-1}a_k$<br>To check whether a number is divisible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>is divisible by 7</li> <li>(OR)</li> <li>by 7, subtract twice of the u</li> <li>Continue the above process</li> </ul>                                           | nits digit from the remaining a                                 |  |  |
|     | $a_2a_1a_0 - a_5a_4a_3 + a_8a_7a_6 - \dots a_ka_{k-1}a_k$<br>To check whether a number is divisible<br>check whether it is divisible by 7 or not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>is divisible by 7</li> <li>(OR)</li> <li>by 7, subtract twice of the u</li> <li>Continue the above process</li> <li>y 7.</li> </ul>                             | nits digit from the remaining a                                 |  |  |
|     | $a_2a_1a_0 - a_5a_4a_3 + a_8a_7a_6 - \dots a_ka_{k-1}a_k$<br>To check whether a number is divisible<br>check whether it is divisible by 7 or not<br><b>Example :</b> 1) 342384 is divisible by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>is divisible by 7</li> <li>(OR)</li> <li>by 7, subtract twice of the u</li> <li>Continue the above process</li> <li>y 7.</li> </ul>                             | nits digit from the remaining a                                 |  |  |
|     | $a_2a_1a_0 - a_5a_4a_3 + a_8a_7a_6 - \dots a_ka_{k-1}a_k$<br>To check whether a number is divisible<br>check whether it is divisible by 7 or not<br><b>Example :</b> 1) 342384 is divisible by<br>Since 384 - 342 = 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>is divisible by 7</li> <li>(OR)</li> <li>by 7, subtract twice of the u</li> <li>Continue the above process</li> <li>y 7.</li> <li>is divisible by 7.</li> </ul> | nits digit from the remaining a                                 |  |  |
|     | $a_2a_1a_0 - a_5a_4a_3 + a_8a_7a_6 - \dots a_ka_{k-1}a_k$<br>To check whether a number is divisible<br>check whether it is divisible by 7 or not<br><b>Example :</b> 1) 342384 is divisible by<br>Since 384 - 342 = 42<br>2) 343 is divisible by 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>is divisible by 7</li> <li>(OR)</li> <li>by 7, subtract twice of the u</li> <li>Continue the above process</li> <li>y 7.</li> <li>is divisible by 7.</li> </ul> | nits digit from the remaining a                                 |  |  |

) ()

## H.C.F AND L.C.M

12 13 14 15 16 **1**7 18 **1**9 20

## AIM - 5

16

#### HIGHEST COMMON FACTOR( H.C.F)

The greatest number, which is the common factor of two or more given numbers is called the Highest Common Factor (H.C.F.) or the Greatest Common Divisor (G.C.D.).

#### H.C.F. by using factors

Example : Find H.C.F. of 8, 12. Solution: Factors of 8 are 1, 2, 4, 8. Factors of 12 are 1, 2, 3, 4, 6, 12. Common factors of 8,12 are 1, 2, 4. H.C.F. of 8 and 12 is 4.

#### H.C. F of numbers using prime factorization

Example : Find G.C.D. of 24, 36 and 84 Solution :  $24 = 2 \times 2 \times 2 \times 3 = 2^3 \times 3^1$  $36 = 2 \times 2 \times 3 \times 3 = 2^2 \times 3^2$  $84 = 2 \times 2 \times 3 \times 7 = 2^2 \times 3 \times 7$ 

:. H.C.F. of 24, 36, 84 is  $2 \times 2 \times 3 = 12$ .

Two positive integers 'a' and 'b' are said to be relatively prime or **co-primes**, if the G. C. D. of 'a' and 'b' is 1. i.e., (a, b) = 1.

#### LEAST COMMON MULTIPLE (L.C.M)

The least common multiple of two or more natural numbers is the least natural number that is a multiple of the given numbers.

L.C.M. by writing multiples of given numbers : Example : Find the L.C.M. of 2 and 3. Solution : Multiples of 2 are 2, 4, 6, 8, 10,12, 14, 16, 18, ... Multiples of 3 are 3, 6, 9, 12, 15,18, ... Common multiples of 2 and 3 are 6, 12, 18, ... ∴ The least common multiple of 2 and 3 is 6. L.C.M. by prime factorization method : Example : Find L.C.M. of 15, 24. 3]30,60,90

| <b>Solution :</b> $15 = 3 \times 5$                                         | 2 10, 20, 30 |
|-----------------------------------------------------------------------------|--------------|
| $24 = 2 \times 2 \times 2 \times 3$                                         |              |
| L.C.M. = $3 \times 5 \times 2 \times 2 \times 2 = 120$                      | 5 5,10,15    |
| L.C.M. by synthetic division method :                                       | 21,2,3       |
| <b>Example :</b> Find L.C.M. of 30, 60, 90.                                 | 3 1,1,3      |
| The L.C.M. of 30, 60, 90 is $3 \times 2 \times 5 \times 2 \times 3 = 180$ . | 1.1.1        |

|      |                                                         |                                                                                                                      | X                           | MATHEMATIC           | CS - V   |
|------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------|----------|
| >    | Example: H.C.F. of 1<br>L.C.M. of<br>Product of         | <b>EN H.C.F. AND L.C.M</b><br>2 and 15 is 3<br>12 and 15 is 60<br>H.C.F. and L.C.M. = 3 ×<br>two numbers = 12 × 15 = | 60 = 180,                   |                      |          |
|      | Product o                                               | f two numbers = product of                                                                                           | of their H.C.F and L.C.M    |                      |          |
|      |                                                         | WORK SI                                                                                                              | HEET - 5                    |                      |          |
|      | Straight objective typ                                  | e Questions                                                                                                          |                             |                      |          |
| 1.   | The H.C.F of 13,26 is                                   | L) 12                                                                                                                | 120                         | 1) 52                | 1        |
|      | a) 1                                                    | b) 13                                                                                                                | c) 26                       | d) 52                |          |
| 2.   | The H.C.F of 24, 72, 9<br>a) 4                          | b) 6                                                                                                                 | c) 12                       | d) 24                |          |
| 3.   | The L.C.M of 3,5 is                                     | · · · · · · · · · · · · · · · · · · ·                                                                                |                             | ,<br>I               | 1        |
|      | a) 1                                                    | b) 3                                                                                                                 | c) 5                        | d) 15                |          |
| 4.   | The L.C.M of 25,40,60                                   |                                                                                                                      |                             | [                    | 1        |
|      | a) 300                                                  | b) 400                                                                                                               | c) 600                      | d) 800               |          |
| 5.   | If the L.C.M of two nu other number is                  | mbers is 144 and their H.C                                                                                           | C.F. is 24 such that one of | the numbers is 48, 1 | then the |
|      | a) 72                                                   | b) 96                                                                                                                | c) 108                      | (d) 132              |          |
|      | One or more than one                                    | e correct answer type Qu                                                                                             | lestions :                  |                      | upunnan. |
| 6.   | The L.C.M of 12,15 ar                                   |                                                                                                                      | and the second              | С <sub>о</sub>       |          |
|      | a) 30                                                   | b) 60                                                                                                                | c) 120                      | d) $2^2 \times 15$   |          |
| 7.   | The H.C.F of 13, 72 is                                  |                                                                                                                      |                             | I I                  |          |
|      | a) 1                                                    | b) 12                                                                                                                | c) least natural number     | d) 13                | 0.0      |
| 8.   |                                                         | C.F of 1 and any natural 1<br>C.M of 1 and any natural 1<br>ne                                                       |                             | [<br>se              |          |
| 9.   |                                                         | I.C.F of 150, 180 and 200                                                                                            | is 10.                      | ſ                    | 1        |
|      | <b>Statement (B) :</b> The L<br>a) Both A and B are tru |                                                                                                                      | b) Both A and B are fall    | se                   |          |
|      | c) A is true and B is fall                              |                                                                                                                      | d) A is false and B is tru  |                      |          |
| 10.  | Assertion(A) : If the L                                 | .C.M of 336 and 560 is 10                                                                                            | 680, then their G.C.D is 1  | 12. [                |          |
|      |                                                         | uct of two numbers is equa                                                                                           | -                           | F and L.C.M.         |          |
|      |                                                         | rrect, and R is the correct<br>rrect, but R is not the corr                                                          | -                           |                      |          |
|      | c) A is correct and R is                                |                                                                                                                      | d) A is incorrect and R i   | is correct.          | 2        |
| Vars | sity Education Mana                                     | gement Pvt. Ltd.                                                                                                     |                             |                      | 17       |
|      |                                                         |                                                                                                                      |                             |                      |          |
|      |                                                         |                                                                                                                      |                             |                      | A A A    |
|      |                                                         |                                                                                                                      |                             |                      |          |

Je

Ver la dontra la

11. Assertion(A) : The H.C.F of 25, 125, 625 is 625.

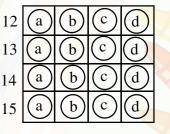
**Reason(R) :** The greatest number which is the common factor of two (or) more given numbers is called their H.C.F.

- a) Both A and R are correct, and R is the correct explanation of A
- b) Both A and R are correct, but R is not the correct explanation of A

12 13 14 15 16 17 18 19 20

- c) A is correct and R is incorrect
- d) A is incorrect and R is correct.

#### Matrix Matching type Questions :


#### Column - I

18

- 12. The H.C.F of 2,18 is
- 13. The L.C.M.of 1, 3 is
- 14. The L.C.M.of 2, 4 is
- 15. The H.C.F of 17,19 is

a) 1
b) 2
c) 3
d) 4

**Column - II** 



]

#### Do You Know ?

1. The L.C.M. of  $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}$  is 6

 $\left[ \text{The L.C. M of fractions} = \frac{\text{L.C.M of numerators}}{\text{H.C.F of denominators}} \right]$ 

2. The H.C.F. of  $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}$  is  $\frac{1}{12}$ 

The H.C.F of fractions =  $\frac{\text{H.C.F of numerators}}{\text{L.C.M of denominators}}$ 

#### Know this

#### **Pythagorean Triplet**

Three natural numbers m,n and p are said to form a Pythagorean triplet (m, n, p), if  $m^2 + n^2 = p^2$ .

For every natural number m > 2, we have  $(2m, m^2-1, m^2+1)$  is a Pythagorean triplet.

**Example :** The Pythagorean triplet whose smallest number 12 is (12, 35, 37).

## 6. FRACTIONS

14 15 16 17 18 19 2

## AIM - 6

#### **SYNOPSIS**

#### FRACTION

The numbers of the form  $\frac{p}{q}$ , where  $q \neq 0$  and p,q are non negative integers and (p,q) =1 is called a

fraction.

**Example :**  $\frac{2}{3}, \frac{3}{5}, \frac{5}{7}$  ....

#### **PROPER FRACTION**

A fraction whose denominator is greater than the numerator is called a proper fraction.

**Example :**  $\frac{1}{2}$ ,  $\frac{1}{3}$ ,  $\frac{2}{5}$ ,  $\frac{3}{4}$ , 0 ....

#### **IMPROPER FRACTION**

A fraction whose numerator is greater than its denominator is called an improper fraction.

|           | 3              | 5             | 7 | 8   |   | 2                |    |
|-----------|----------------|---------------|---|-----|---|------------------|----|
| Example : | $\overline{2}$ | $\frac{1}{2}$ | 5 | , 3 | , | $\overline{2}$ , | 1, |

#### **MIXED FRACTION**

A fraction which contains integral part and a fractional part (fractional part should be a proper fraction) is called a mixed fraction.

**Example :** 
$$1\frac{1}{2}$$
,  $2\frac{3}{4}$ ,  $4\frac{5}{6}$ ,  $6\frac{7}{8}$ , ....

#### **EQUIVALENT FRACTIONS**

The fractions obtained by multiplying or dividing the numerator and denominator of a given fraction with same number are called equivalent fractions.

**Example :** The equivalent fractions of  $\frac{3}{5}$  are  $\frac{6}{10}$ ,  $\frac{9}{15}$ ,  $\frac{12}{20}$ ,  $\frac{15}{25}$ ,  $\frac{18}{30}$ , .... etc.

#### LIKE FRACTIONS

Fractions having same denominator are called like fractions

**Example :**  $\frac{1}{3}, \frac{2}{3}, \frac{4}{3}, \frac{5}{3}, \frac{7}{3}, \frac{8}{3}, \dots$ 



a)  $\frac{7}{12}$ 

c)  $\frac{11}{12}$ 

a)  $\frac{2}{3}$ 

#### **UNLIKE FRACTIONS**

The fractions having different denominators are called unlike fractions

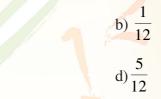
12 13 14 15 16 **1**7 18 **1**9 20

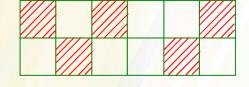
**Example :**  $\frac{1}{2}$ ,  $\frac{2}{3}$ ,  $\frac{5}{7}$ ,  $\frac{8}{9}$ , ....

WORK SHEET - 6

c)  $\frac{17}{6}$ 

c)  $\frac{33}{11}$ 


c)  $8\frac{11}{6}$ 


c) 0

c)  $\frac{2}{3}$ 

#### **Straight objective type Questions**

The fraction represented by the shaded region in the figure is





d)  $\frac{1}{9}$ 

d)  $\frac{38}{11}$ 

d)  $11\frac{4}{5}$ 

d) > 1

d)  $\frac{1}{32}$ 

]

1

2. Among the following an improper fraction is

3. The equivalent fraction of unshaded region in the figure is

b)  $\frac{3}{11}$ 

| a) $\frac{15}{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | b) $\frac{20}{32}$ | (E) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|
| (c) $\frac{10}{8}$ (c) | $\frac{9}{24}$     | and |
| $3\frac{5}{11} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |     |

 $\frac{59}{6} =$ 

5.

a) $\frac{35}{11}$ 

a)  $9\frac{5}{6}$ 

a)  $\frac{9}{8}$ 

20

#### One or more than one correct answer type Questions

b)  $\frac{1}{18}$ 

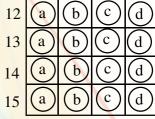
b)  $5\frac{9}{6}$ 

b)  $\frac{36}{11}$ 

a) < 1 b) 1

The possible value of an improper fraction is

Among the following not a unit fraction is


|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MATHEMATICS - V                                     |  |
|---|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|
|   | 8.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     |  |
|   | 9.  | be a proper fraction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |  |
|   | 10. | Assertion (A): The fractions $\frac{1}{13}$ , $\frac{5}{13}$ , and $\frac{9}{13}$ are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e like fractions.                                   |  |
| 2 |     | <b>Reason</b> ( <b>R</b> ) : The fractions having same denominal a) Both A and R are correct, and R is the correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nator are called like fractions<br>explanation of A |  |
| 5 | 11. | Assertion (A): The fractions $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}$ are called up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nlike fractions.                                    |  |
|   |     | a) Both A and R are correct, and R is the correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | explanation of A                                    |  |
|   |     | Statement (A) : The value of a proper fraction is always less than 1.[Statement (B) : A fraction consists of a whole number and a proper fraction is called a mixed fractiona) Both A and B are trueb) Both A and B are falsec) A is true, B is falsed) A is false, B is trueStatement (A) : If the numerator of a fraction is less than the denominator, then the fraction is said to be a proper fraction.Statement (B): The value of a mixed fraction is always greater than 1.a) Both A and B are trueb) Both A and B are falsec) A is true, B is falsed) A is false, B is trueAssertion (A): The fractions $\frac{1}{13}$ , $\frac{5}{13}$ , and $\frac{9}{13}$ are like fractions.[Reason (R): The fractions having same denominator are called like fractionsa) Both A and R are correct, and R is the correct explanation of Ab) Both A and R are correct, but R is not the correct explanation of Ab) Both A and R is correct and R is incorrect and R is correctAssertion (A): The fractions $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}$ are called unlike fractions.[[[[[[Reason (R): The fractions $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}$ are called unlike fractions.[[[[[[[[[ |                                                     |  |
|   |     | Column - I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Column - II                                         |  |
|   | 12. | $\frac{2}{7}, \frac{1}{5}, \frac{3}{11}$ are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a) Equivalent fractions 12 a b c d                  |  |
|   | 13. | $\frac{8}{5}, \frac{7}{4}, \frac{6}{3}$ are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | b) Like fractions                                   |  |

17 18 19

16

 $\frac{2}{15}, \frac{1}{15}, \frac{7}{15}$  are 14.

 $\frac{3}{4}, \frac{12}{16}, \frac{15}{20}, \frac{18}{24}$  are 15.



21

d) Improper fractions

c) Unlike frctions

## 7. DECIMAL FRACTIONS



SYNOPSIS

#### **DECIMAL FRACTIONS**

The fractions having 10, 100, 1000, .... in the denominator are called decimal fractions.

**Example :**  $\frac{1}{10}, \frac{7}{100}, \frac{23}{1000}, \dots$ 

- > Decimals are used in many ways in our lives as, in representing units of money, length and weight.
- Decimal numbers having two parts, the left side part of the decimal point is whole number part and the right side part of the decimal point is decimal part.

**Example :** In 12.576, the whole number / part is 12 and the decimal part is 576.

The value of the decimal part of a number is always less than 1.

#### LIKE DECIMALS

If any two decimals having the same number of decimal places, then they are called like decimals. **Example :** 5.76, 9.52 are like decimal

#### **UNLIKE DECIMALS**

If any two decimals having different number of decimal places then they are called unlike decimals. **Example :** 11.65, 13.459 are unlike decimals.

#### **ADDITION OF DECIMAL FRACTIONS**

The sum of two decimals should be find by change them in the form of fractions.

**Example :**  $2.5 + 3.4 = \frac{25}{10} + \frac{34}{10} = \frac{59}{10} = 5.9$ 

#### SUBTRACTION OF DECIMAL FRACTIONS

The difference of two decimals should be find by change them in the form of fractions.

**Example :**  $5.72 - 3.26 = \frac{572}{100} - \frac{326}{100} = \frac{246}{100} = 2.46$ 

#### MULTIPLICATION

To multiply a decimal number by 10,100,1000 ..... we move the decimal point in the number to the right by as many places as there are zeroes in the numbers 10,100, 1000, ..... **Example :**  $2.527 \times 10 = 25.27$ 

#### DIVISION

To divide a decimal number by 100,1000 ..... we move the decimal point in the number to the left by as many places as there are zeroes in 10,100, 1000, ..... **Example :**  $3.567 \div 10 = 0.3567$ 

[

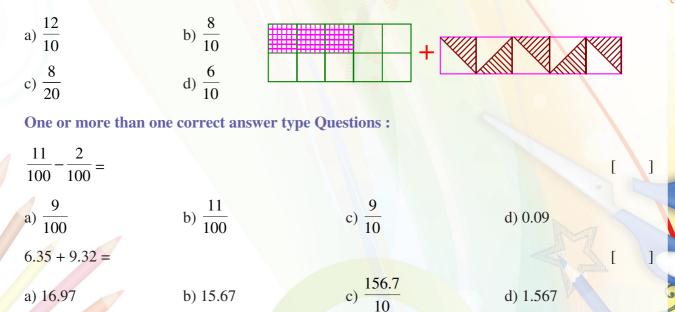
#### **ADDITION OF TWO DECIMAL NUMBERS :**

We can add two decimal numbers in such a way that the tenth part of first number will add to tenth part of second number, similarly the hundredth parts should be added together.

15 16 17 18 19 20

Example : 0.63 +0.53 1.17

>


6.

## WORK SHEET - 7

#### Straight objective type Questions :

| 1. | The fractions having 10.<br>a) proper fractions | , 100, 1000 , in the der<br>b) decimal fractions | nominator are called<br>c) percentages | [ ] d) mixed fractions                 |
|----|-------------------------------------------------|--------------------------------------------------|----------------------------------------|----------------------------------------|
| 2. | $\frac{625}{100} =$<br>a) 62.5                  | b) 0.6 <mark>25</mark>                           | c) 6.25                                | [ ]<br>d) 0.0625                       |
| 3. | $\frac{1234}{1000} =$ a) 1. 234                 | b) 12.34                                         | c) 0.1234                              | [ ]<br>d) 123.4                        |
| 4. | 7.8 =                                           | 78                                               | . 78                                   | 00 00 00 00 00 00 00 00 00 00 00 00 00 |
| K  | a) $\frac{1}{8}$                                | b) 100                                           | c) <u>10</u>                           | d) 10                                  |

#### 5. The sum of the fractions represented by shaded regions from the figures is



24

|                                       | IVIA |                                                                                                                 |                                            |           |             |   |
|---------------------------------------|------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------|-------------|---|
|                                       | 8.   | Statement(A): $\frac{1}{10} + \frac{2}{100} = \frac{12}{100}$ .                                                 |                                            | [         | ]           |   |
|                                       |      | Statement(B) : The value of the decimal part of                                                                 | a number is always less than 1.            |           |             |   |
| and Manuality                         |      | a) Both A and B are true                                                                                        | b) Both A and B are false                  |           |             |   |
|                                       |      | c) A is true, B is false                                                                                        | d) A is false, B is true                   |           |             |   |
|                                       |      |                                                                                                                 |                                            |           |             |   |
| 2.2                                   | 0    | Statement (A) : $1 + 2.7 = \frac{37}{10}$ .                                                                     |                                            | г         | 1           |   |
| A SA                                  | 7.   | Statement (A) : $1 + 2.7 - 10$ .                                                                                |                                            | L         | ]           |   |
|                                       |      | Statement (B) : The whole number part in 102. 6                                                                 | 59 is 12.                                  |           |             |   |
|                                       |      | a) Both A and B are true                                                                                        | b) Both A and B are false                  |           |             |   |
|                                       |      | c) A is true and B is false                                                                                     | d) A is false and B is true                |           |             |   |
|                                       | 10.  | Assertion(A): 1.25, 2.73 and 5.23 are called like                                                               | e decimals.                                | ſ         | 1           |   |
|                                       |      | <b>Reason</b> ( <b>R</b> ): If any two decimals having the sam                                                  |                                            | called    | l like      |   |
|                                       |      | decimals.                                                                                                       | 1                                          |           |             |   |
|                                       |      | a) Both A and R are correct, and R is the correct                                                               | t explanation of A                         |           |             |   |
|                                       |      | b) Both A and R are correct, but R is not the cor                                                               | -                                          |           |             |   |
|                                       |      | c) A is correct and R is incorrect                                                                              | d) A is incorrect and R is correct         |           |             |   |
|                                       | 11.  |                                                                                                                 |                                            | T         | 4           |   |
|                                       | 11.  | Assertion(A): 5.23, 7.523, 11.2723 are unlike d<br>Reason(R): If any two decimals having different              |                                            | L<br>Molt | l<br>unlika |   |
|                                       |      |                                                                                                                 | number of decimal places, then they are ca | incut     | IIIIKC      |   |
|                                       |      | decimals.                                                                                                       |                                            |           |             |   |
|                                       |      | a) Both A and R are correct, and R is the correct                                                               |                                            |           |             |   |
|                                       |      | b) Both A and R are correct, but R is not the cor                                                               |                                            |           |             |   |
|                                       |      | c) A is correct and R is incorrect                                                                              | d) A is incorrect and R is correct         |           |             |   |
| .5                                    |      | Matrix matching type Questions :                                                                                |                                            |           |             | - |
| A A A A A A A A A A A A A A A A A A A |      | and the start of the |                                            |           |             |   |

| in o       | Column - I                          | Column - II                                   |  |
|------------|-------------------------------------|-----------------------------------------------|--|
|            | $\frac{7}{10} + \frac{3}{100} =$    | a) $\frac{43}{100}$ 12 a b c d                |  |
| 12.<br>13. | $\frac{11}{100} + \frac{32}{100} =$ | b) $\frac{123}{100}$ 13 a b c d<br>14 a b c d |  |
| 14.        | $\frac{29}{100} - \frac{12}{100} =$ | c) $\frac{73}{100}$ 15 a b c d                |  |
| 15.        | 1.2 + 0.03 =                        | d) $\frac{17}{100}$                           |  |

**Verify**:  $1 + \frac{1}{10} + \frac{1}{100} + \frac{1}{1000} + \frac{1}{10000} + \frac{1}{100000} = \frac{111111}{1000000}$ .

Try This

Varsity Education Management Pvt. Ltd.

# Ι.

# **EXPONENTS AND POWERS**

## **INTRODUCTION TO ALGEBRA**

# AIM - 8

#### **SYNOPSIS**

#### VARIABLE

A symbol which can take various numerical values is called a variable or literal. Examples : x, y, z, a, b, c etc

#### CONSTANT

A symbol which has fixed value is called a constant.

- **Example :** i) In 5x, 5 is a constant and 'x' is a variable.
  - ii) If we say 'a' is a constant in ax, then 'a' takes a fixed value.

#### TERM

Constants alone or variables alone or their combinations by operation of multiplication or division are called terms.

**Examples :** 6, x, 4x,  $7x^2$  yz,  $\frac{x}{y}$ ,  $\frac{2}{y}$  etc.

#### **CONSTANT TERM**

A term of an expression having no literal is called a constant term.

**Examples :** 2,  $\frac{4}{3}$ ,  $\frac{7}{9}$ ,  $\sqrt{5}$  etc.

## WORK SHEET - 8

ſ

]

]

d) s

d) - x

d) all

1

d)  $\overline{x+y+z}$ 

y

c) xyz

#### **Straight objective type Questions**

1. Among the following not a variable is<br/>a) ab) 2c) - x2. In (2015 x), constant is<br/>a) 2015b) xc) - 13. Among the following a term is<br/>a) 6b) 9xc)  $\frac{3}{x}$ 

The sum of the variables from the adjacent figures is

b) x + y + z

Varsity Education Management Pvt. Ltd.

a)  $\frac{x+y}{2}$ 

| t4 15 16 17 18 19 20                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                          | J J 2 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| XIA                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [ ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| b) <i>l</i> + b+ h                                                                                                                                                                                                                                                                                                                                                                                             | c) <i>I</i> bh                                                                                                                                                                                                                                                                                                                                                           | d) $\frac{l+b}{h}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| e correct answer ty                                                                                                                                                                                                                                                                                                                                                                                            | pe Questions :                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| a constant term is                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [ ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| b) 6abc                                                                                                                                                                                                                                                                                                                                                                                                        | c) 9                                                                                                                                                                                                                                                                                                                                                                     | d) √5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| d q is                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [ ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| b) p –q                                                                                                                                                                                                                                                                                                                                                                                                        | <b>c</b> ) p + (– q)                                                                                                                                                                                                                                                                                                                                                     | d) $p - (-q)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| bol which can take v                                                                                                                                                                                                                                                                                                                                                                                           | v <mark>arious nume</mark> rical values is                                                                                                                                                                                                                                                                                                                               | called a variable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| vided by '9' can be w                                                                                                                                                                                                                                                                                                                                                                                          | ritten as $\frac{9}{x}$ .                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| a) $\frac{lb}{h}$ b) $l + b + h$ c) $lbh$ d) $\frac{l+b}{h}$<br>One or more than one correct answer type Questions :<br>6. Among the following a constant term is []<br>a) $\frac{5a}{b}$ b) 6abc c) 9 d) $\sqrt{5}$ []<br>7. The difference of p and q is<br>a) $p + q$ b) $p - q$ c) $p + (-q)$ d) $p - (-q)$<br>8. Statement(A) : A symbol which can take various numerical values is called a variable. [] |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| variable in – 999 x is<br>ue                                                                                                                                                                                                                                                                                                                                                                                   | – 9x.<br>b) Both A and B a                                                                                                                                                                                                                                                                                                                                               | re false                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| I which has a fixed vorrect, and R is the correct, but R is not the s incorrect                                                                                                                                                                                                                                                                                                                                | alue is called a constant .<br>orrect explanation of A<br>ne correct explanation of A<br>d) A is incorrect ar                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ns.<br>orrect, and R is the co                                                                                                                                                                                                                                                                                                                                                                                 | orrect explanation of A                                                                                                                                                                                                                                                                                                                                                  | by operation of multipl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lication or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                          | nd R is correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| e Ouestions :                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                | Column - II                                                                                                                                                                                                                                                                                                                                                              | 12 (a) (b) (c) (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ת 🔪 ר                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                | · ·                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\exists$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\leq$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                | d) a constant                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                | Varsity Educa                                                                                                                                                                                                                                                                                                                                                            | tion Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pvt. Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                | b) $l + b + h$<br>e correct answer ty<br>a constant term is<br>b) 6abc<br>d q is<br>b) $p -q$<br>abol which can take v<br>vided by '9' can be w<br>ue<br>m containing only nu<br>variable in - 999 x is<br>ue<br>lse<br>are called constant<br>l which has a fixed v<br>orrect, and R is the c<br>orrect, but R is not the<br>s incorrect<br>alone or variables at<br>s. | b) $l + b + h$ c) $lbh$<br>e correct answer type Questions :<br>a constant term is<br>b) 6 abc c) 9<br>d q is<br>b) $p - q$ c) $p + (-q)$<br>abolt which can take various numerical values is<br>vided by '9' can be written as $\frac{9}{x}$ .<br>ue b) Both A and B and<br>d) A is false, B is the<br>m containing only numbers is called a constant<br>ariable in - 999 x is - 9x.<br>ue b) Both A and B and<br>d) A is false, B is the<br>m containing only numbers is called a constant<br>ariable in - 999 x is - 9x.<br>ue b) Both A and B and<br>d) A is false and B<br>are called constants .<br>I which has a fixed value is called a constant .<br>orrect, and R is the correct explanation of A<br>orrect, but R is not the correct explanation of A<br>sincorrect d) A is incorrect and<br>s alone or variables alone or their combinations<br>h, 2, 9x, xyz, $\frac{x}{y}$ are called terms.<br>s alone or variables alone or their combinations factor<br>orrect, but R is not the correct explanation of A<br>precedent of the correct explanation of A<br>incorrect d) A is incorrect and<br>a term b) an expression<br>c) a variable<br>d) a constant | b) $l + b + h$ c) $l b h$ d) $\frac{l + b}{h}$<br>c correct answer type Questions :<br>a constant term is<br>b) 6 abc c) 9 d) $\sqrt{5}$<br>d q is<br>b) $p - q$ c) $p + (-q)$ d) $p - (-q)$<br>tho twich can take various numerical values is called a variable.<br>the bound of the various numerical values is called a variable.<br>the bound of the various numerical values is called a variable.<br>the bound of the various numerical values is called a variable.<br>the bound of the various numerical values is called a variable.<br>the bound of the various numerical values is called a variable of the various of the various is called a constant term.<br>ariable in -999 x is -9x.<br>the bound of the value is called a constant term.<br>ariable in -999 x is -9x.<br>the bound of the value is called a constant term.<br>ariable in -999 x is -9x.<br>the bound of the value is called a constant term.<br>ariable in -999 x is -9x.<br>the constants.<br>the variable is not the correct explanation of A<br>bound of the value is called a constant for the value is called a constant term.<br>ariable is not the correct explanation of A<br>bound of the value is called terms.<br>alone or variables alone or their combinations by operation of multiples.<br>bound of the value is called terms.<br>alone or variables alone or their combinations by operation of multiples.<br>bound of the value of the correct explanation of A<br>bound of the value |

## **EXPONENTS AND LAWS OF EXPONENTS**

15 16 17 18 19 *ж* 

## AIM - 9

#### **SYNOPSIS**

#### **EXPONENTIAL FORM**

The product of a number x with itself, 'n' times (n is a natural number) is given by  $x \times x \times x \times ... \times x$  (n factors) and is written as  $x^n$  which is called the exponential form. Here x is called the base, n is called the exponent (or) index of x.  $x^n$  can be read as  $n^{\text{th}}$  power of x (or) x raised to the power n.

**Example :**  $5 \times 5 \times 5 \times 5 = 5^4$  where base is 5 and index is 4.

The first power of a number is the number itself. i.e.,  $x^1 = x$ 

The second power is called 'square' and the third power is called 'cube' (of a number).

**Example :** Square of 3 is  $3^2$  and Cube of 5 is  $5^3$ .

'1' raised to any integral power gives 1.

**Example :** 
$$1^{8383} = 1$$

When '-1' is raised to an odd positive integral power, it gives '-1'

**Example :**  $(-1)^{243} = -1$ 

When '-1' is raised to an even positive integral power, it gives '1'

**Example :**  $(-1)^{624} = 1$ 

#### LAWS OF EXPONENTS

In the product of exponential forms, if the bases are same, then the powers should be added. i.e.,  $a^m \cdot a^n = a^{m+n}$ , where  $a \neq 0$ . Example :  $2^2 \times 2^5 = 2^{2+5} = 2^7$ 

The power of a product of two or more factors is equal to the product of the same powers of each of the separate factors. i.e.,  $(abc...)^n = a^n b^n...$ **Example :**  $(7.2.10)^2 = 7^2.2^2.10^2$ 

 $(-a)^{n} = (-1)^{n} a^{n} = \begin{cases} a^{n}, \text{ if } n \text{ is even} \\ -a^{n}, \text{ if } n \text{ is odd} \end{cases}$ 

The power of a power of the base is a power of the same base with the index is equal to the product of powers. i.e.,  $(a^m)^n = a^{mn}$ .

 $(a^m)^n$  is different from  $a^{m^n}$ 

 $(a^m)^n$  means  $a^m$  raised to the power *n* and  $a^{m^n}$  means *a* raised to the power  $m^n$ .

12 13 14 15 16 17 18 19 20

**Example :** 
$$(2^3)^2 = 2^6$$
,  $2^{3^2} = 2^9$ , i.e.,  $(2^3)^2 \neq 2^{3^2}$ 

A positive integral power of a number expressed as a fraction is equal to the power of the numerator divided by the power of the denominator.

i.e. 
$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$$
, where  $b \neq 0$ 

**Example :**  $\left(\frac{2}{3}\right)^4 = \frac{2^4}{3^4}$ .

The quotient (fraction) of powers of the same base is the power of the same base with index is equal to the difference of the indices.

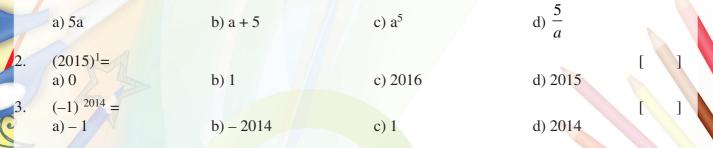
ii)  $\frac{5^3}{5^7} = \frac{1}{5^{7-3}} = \frac{1}{5^4}$ 

$$\frac{a^{m}}{a^{n}} = \begin{cases} a^{m-n} & \text{if } m > n \\ \frac{1}{a^{n-m}} & \text{if } m < n, \text{ where } a \neq 0 \\ 1 & \text{if } m = n \end{cases}$$

**Example :** i)  $\frac{12^5}{12^3} = 12^{5-3} = 12^2$ 

Any non zero base with an index of zero is equal to 1, i.e.,  $a^0 = 1$ , where  $a \neq 0$ . **Example :** i)  $(1000)^0 = 1$  ii)  $(a.b.c....z)^0 = 1$ 

$$a^{-n} = \frac{1}{a^n}$$
  $(a \neq 0)$  and  $\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$ , here  $a, b \neq 0$ 


 $a^m = a^n \Leftrightarrow m = n \ (a \neq 0, 1)$ 

28

WORK SHEET - 9

#### **Straight objective type Questions :**

1. The exponential form of 
$$a \times a \times a \times a \times a$$
 is



|   |     |                                                  | 3 4 5 8 9 10                                                                | 11 12 13 14 15 16 17 18  | 19 20                    |          |
|---|-----|--------------------------------------------------|-----------------------------------------------------------------------------|--------------------------|--------------------------|----------|
|   |     |                                                  |                                                                             |                          | MATHEMATIC               | S-V      |
|   | 4.  | $(-1)^{999} =$<br>a) 1999                        | b) – 1                                                                      | c) – 999                 | d) 1000                  | ]        |
|   | 5.  | The index of $(-1)^{20}$                         | <sup>08</sup> is                                                            |                          |                          |          |
|   |     | a) 1                                             | b) – 2008                                                                   | c) 2008                  | d) 2009                  |          |
|   |     | One or more than o                               | one correct answer typ                                                      | pe Questions :           |                          |          |
|   | 6.  | $(9)^{15} =$                                     |                                                                             | and a                    |                          |          |
|   |     | a) $(9^5)^3$                                     | b) $(9^{10})^5$                                                             | c) $(9^3)^5$             | d) $(9^{10}) + (9)^5$    |          |
|   | 7.  | $(-999999)^0 =$                                  |                                                                             |                          | Y I I                    |          |
|   |     | a) 0                                             | b) 1                                                                        | c) (99) <sup>0</sup>     | d) (100000) <sup>0</sup> |          |
|   | 8.  | <b>Statement</b> ( <b>A</b> ) : a <sup>m</sup> × | $a^n = a^{m+n}, (\text{where } a \neq 0)$                                   | ) and $m, n \in Q$ ).    | 1                        | 1        |
| 2 |     | <b>Statement(B)</b> : $\left(\frac{a}{b}\right)$ | $=\frac{a^m}{b^m}$ , (where $b \neq 0$ )                                    |                          |                          |          |
|   | 3   | a) Both A and B are                              |                                                                             | b) Both A and E          |                          |          |
| 2 |     | c) A is true, B is false                         |                                                                             | d) A is false, B i       | is true                  |          |
| 2 | 9.  |                                                  | $< 29^2 \times 31^2 = (9 \times 29 \times 29)^2$<br>value of 1 raised to an |                          | [                        | ]        |
|   |     | a) Both A and B are                              |                                                                             | b) Both A and E          | 3 are false              |          |
|   |     | c) A is true and B is :                          |                                                                             | d) A is false and        |                          |          |
|   | A   | 9 <sup>8</sup>                                   |                                                                             |                          |                          |          |
|   | 10. | Assertion(A): $\frac{9^8}{9^3}$ =                | $9^{8-3}$ (or) $9^5$ .                                                      |                          | 20 TO 80 100 TO 10       |          |
|   |     | Reason(R): If m > 1                              | n and a $\neq 0$ , then $\frac{a^m}{a^n}$ =                                 | $=a^{m-n}$ .             |                          |          |
|   |     |                                                  |                                                                             | orrect explanation of A  |                          | 11111111 |
|   |     | b) Both A and R are                              | correct, but R is not th                                                    | e correct explanation of | fA                       | 0 160    |
|   |     | c) A is correct and R                            |                                                                             |                          |                          |          |
|   |     | d) A is incorrect and                            | R is correct                                                                |                          |                          |          |
|   | 11. | Assertion(A) : $\frac{(25)}{(25)}$               | $\frac{2^{2}}{8} = \frac{1}{(25)^{6}}$ .                                    |                          | L L                      | 1        |
|   | 1   | <b>Reason(R) :</b> If m < 1                      | n and a $\neq 0$ , then $\frac{a^m}{a^n}$                                   | $=\frac{1}{a^{n-m}}$ .   |                          | 0        |
|   |     |                                                  |                                                                             | orrect explanation of A  |                          |          |
| 7 |     | b) Both A and R are<br>c) A is correct and R     |                                                                             | e correct explanation of | fA                       |          |
|   |     | d) A is incorrect and R                          |                                                                             |                          |                          |          |
|   |     |                                                  |                                                                             |                          |                          |          |
| 7 |     |                                                  |                                                                             |                          |                          |          |

29

Varsity Education Management Pvt. Ltd.

#### **MATHEMATICS - V Matrix Matching type Questions : Column - II** Column - I $(5)^{-2} =$ a) 5<sup>5</sup> 12 а d $\frac{5^4}{5^2} =$ b) $\frac{1}{5^2}$ 13 a b d 13. 14 a с b d $5^2 \times 5^3 =$ c) 5<sup>25</sup> 15 $5^{5^2} =$ d) 5<sup>2</sup> 15. Do you know ? Is $4^{3^6} = 4^{18}$ (or) not ? Why ?

170 170 10

30

#### Do you know

#### **Rational Numbers**

A number should be written in the form of  $\frac{p}{q}$ , where 'p' and 'q' are integers and  $q \neq 0$  is called a rational number, the set of rational numbers is denoted by "Q". A rational number may be positive, zero or negative.

**Example :**  $\frac{1}{2}$ ,  $\frac{2}{2}$ ,  $\frac{-2}{3}$ ,  $\frac{0}{1}$ ,  $\frac{-5}{11}$ ,...

# 111.

# **ALGEBRAIC EXPRESSIONS**

## **TYPES OF ALGEBRAIC EXPRESSIONS**

## **SYNOPSIS**

AIM - 10

#### **ALGEBRAIC EXPRESSION**

The combination of terms obtained by the fundamental operations  $+, -, \times, +$  is called an algebraic expression.

**Examples :** 2x + 3, 5 - 2y, 6a,  $7 \div b$ .

#### **TYPES OF ALGEBRAIC EXPRESSIONS**

An expression containing only one term in which powers of variables are non-negative integers is called a monomial.

**Examples :** 4xyz,  $2l^2m^2$ , 8pq etc.

Every monomial is a term but every term need not be a monomial.

**Examples :**2x is a monomial and also a term

 $\frac{2}{x}$  is only a term, not a monomial, because  $\frac{2}{x} = 2x^{-1}$ , where power of 'x' is a negative integer.

An expression containing two monomials is called a binomial. **Examples :** 2 + x, 3y + 4z etc.

An expression containing three monomials is called a trinomial.

**Examples :** x + y - z, 3xz - 4xy + 2zy etc.

An expression containing one or more monomials is called a polynomial. **Examples :** 2a - 4b, 5x + y + z etc.

An expression containing one or more terms is called a multinomial.

Examples: 
$$2 + \frac{4}{x}$$
,  $3x + y - z$  etc.

All polynomials are multinomials but every multinomial need not be a polynomial.

WORK SHEET - 10

#### **Straight objective type Questions**

1. Among the following a polynomial is

a) 5x + 2y + 3z

b)  $6x + \frac{2}{v} + z$ 

b) 2015

c) x + 
$$\sqrt{y}$$
 + z

c)  $\frac{a}{2016}$ 

d)  $x^2 + y^{-1} + z$ 

d) <u>201</u>5

1

The combination of terms obtained by the fundamental operations  $+, -, \times, +$  is called a) an equation b) an algebraic expression c) an identity d) a polynomial

Among the following not a monomial is

a) xy

|                  | THEMATICS - V                               | X                                                                                                                                  |                                                                                                        |                       |                  |
|------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------|------------------|
| 4.               | Among the following                         |                                                                                                                                    |                                                                                                        |                       | [                |
|                  | a) abc                                      | b) $\frac{a+b}{c}$                                                                                                                 | c) $a + b + c$                                                                                         | d) a + bc             |                  |
| 5.               | $\frac{x+y}{2}$ is                          |                                                                                                                                    |                                                                                                        |                       | · ۱              |
|                  | a) a monomial                               | b) a binomial                                                                                                                      | c) a trinomial                                                                                         | d) not a poly         | nomial           |
|                  |                                             | 1 Maria                                                                                                                            |                                                                                                        | a) not a poly         | nonnu            |
| A REAL           |                                             | one correct answer typ                                                                                                             | e Questions :                                                                                          |                       |                  |
| 6.               | Among the following<br>a) 11x               | g a polynomial is<br>b) $x + y + 6$                                                                                                | c) x + y                                                                                               | d) abcd               |                  |
| 7.               | Among the following                         |                                                                                                                                    | C) A T y                                                                                               | u) uoou               |                  |
|                  |                                             |                                                                                                                                    | xy                                                                                                     |                       |                  |
|                  | a) xyz                                      | b) x + y + z                                                                                                                       | c) $\frac{xy}{z}$                                                                                      | d) x + yz             |                  |
| 8.               | Statement(A) : Even<br>Statement(B) : xyz i | -                                                                                                                                  | ut every term need not be                                                                              | e a monomial.         |                  |
|                  | a) Both A and B are                         |                                                                                                                                    | b) Both A and B a                                                                                      |                       |                  |
|                  | c) A is true, B is false                    |                                                                                                                                    | d) A is false, B is t                                                                                  | true                  |                  |
| 9.               |                                             | polynomials are multino<br>nultinomials are polyno                                                                                 |                                                                                                        |                       |                  |
|                  | a) Both A and B are                         |                                                                                                                                    | b) Both A and B a                                                                                      | re false              |                  |
|                  | c) A is true and B is :                     | false                                                                                                                              | d) A is false and E                                                                                    | is true               |                  |
|                  | a) Both A and R are                         | ebraic expression contai<br>correct, and R is the co<br>correct, but R is not the                                                  | ning three monomials is<br>rrect explanation of A<br>e correct explanation of A<br>d) A is incorrect a | A                     |                  |
| 5° 11            |                                             |                                                                                                                                    |                                                                                                        |                       | г                |
| 11.              | Reason(R): An expr                          | a <sup>2</sup> b <sup>2</sup> c <sup>2</sup> , 9pqr, x <sup>2</sup> y, are s<br>ression containing only c<br>is called a monomial. | one term in which the pow                                                                              | vers of variables are | l<br>non - negat |
|                  |                                             | correct, and R is the co                                                                                                           | rrect explanation of A                                                                                 |                       |                  |
|                  | b) Both A and R are                         | correct, but R is not the                                                                                                          | e correct explanation of A                                                                             |                       |                  |
|                  | c) A is correct and R                       | is incorrect                                                                                                                       | d) A is incorrect a                                                                                    | nd R is correct.      |                  |
|                  | Matrix Matching ty                          | pe Questions :                                                                                                                     |                                                                                                        |                       |                  |
|                  | Column - I                                  |                                                                                                                                    | Column - II                                                                                            |                       |                  |
| 12.              | 4xyz is                                     |                                                                                                                                    | a) a multinomial                                                                                       | 12 (a) (b) (c)        |                  |
| 13.              | $\frac{1}{-+2}$ is                          |                                                                                                                                    | b) a binomial                                                                                          | 13 (a) (b) (c)        |                  |
|                  | x                                           |                                                                                                                                    |                                                                                                        | 14 (a) (b) (c)        | (d)              |
| 14.              | a + b + c + d is<br>x + 999 is              |                                                                                                                                    | c) a polynomial<br>d) a monomial                                                                       | 15 a b c              | d                |
|                  |                                             |                                                                                                                                    | , a monomu                                                                                             |                       |                  |
| C <sup>15.</sup> |                                             |                                                                                                                                    |                                                                                                        |                       |                  |

]

0

## FACTORS, COEFFICIENTS AND DEGREES OF EXPRESSIONS

13 14 15 16 17 18 19 20

## AIM - 11

#### **SYNOPSIS**

#### **FACTORS**

In a product each of the literal or numerical value is called a factor of the product.

**Example :**  $6 = 2 \times 3$ , where 2, 3 are called factors of 6,  $5xy = 5 \times x \times y$ , where 5, x, y are called factors of 5xy.

#### COEFFICIENT

In a product containing two or more factors, each factor is called the coefficient of the product of the other factors.

**Example :** In 6x, 6 is the numerical coefficient of 'x' and 'x' is the literal coefficient of 6.

When the numerical coefficient of a term is + 1 or - 1, there is no need to mention 1.

**Example :** The coefficient of  $x^2$  in  $x^2 + 3x + 5$  is 1, the coefficient of xy in  $5x^2 + 7xy + 10y^2$  is 7. The degree of zero polynomial is "not defined."

#### **DEGREE OF A MONOMIAL**

The degree of a monomial is the sum of the powers of variables involved in it. **Example :** The degree of  $5x^2y$  is '3'. Every non-zero number is considered as a monomial with degree zero. **Example :** The degree of '27' is '0'.

#### **DEGREE OF A POLYNOMIAL**

The greatest degree of terms in a polynomial is called the degree of polynomial. **Example :** The degree of  $5x^2 + 6x^3 + 7x + 2$  is '3', the degree of  $(x^3 + x^4)^2$  is  $4 \times 2 = 8$ . The degree of multinomial is not defined

## WORK SHEET - 11

#### Straight objective type Questions

| 1. | The coefficient of x in   | $99xv^2z$ is              |                       |      |
|----|---------------------------|---------------------------|-----------------------|------|
|    | a) 99                     | b) $99y^2$                | c) 99y <sup>2</sup> z | d) 1 |
| 2. | The degree of 2016 is     |                           |                       |      |
|    | a) 1                      | b) 2016                   | c) 2015               | d) 0 |
| 3. | The degree of $10x^8 + 5$ | $5x^6 + 6x^3 + 2x + 9$ is |                       |      |
|    | a) 7                      | b) 8                      | c) 9                  | d) 1 |
| 4. | The coefficient of $x$ in | -101x is                  |                       |      |
|    | a) 101                    | b) 1                      | c) –101               | d) 0 |
|    |                           |                           |                       |      |

|                 |        |                                   | 12 13 14 15 16 17 18 19 20                                 | ti or 6 8                | 0 7 2 3 4 5     |     |
|-----------------|--------|-----------------------------------|------------------------------------------------------------|--------------------------|-----------------|-----|
|                 | MA     | THEMATICS - V                     |                                                            |                          |                 |     |
|                 | 5.     | The degree of $5x^2$ y is a) 3    | b) 2                                                       | c) 1                     | d) 0            | []] |
|                 | 100    | One or more than one              | correct answer type Qu                                     | uestions                 |                 |     |
|                 | 6      | One of the factors of 36          |                                                            |                          |                 | Г 1 |
|                 | 0.     | a) 36 x                           | b) xy                                                      | c) 9x                    | d) y            |     |
|                 | 7.     | The degree of $5x^3 + 7x^2$       | $x^{2} + 6x + 2$ is                                        |                          |                 | []] |
|                 |        | a) 1                              | b) 3                                                       | c) $\frac{3^{1}}{1^{3}}$ | d) 0            |     |
|                 | 8.     | Statement (A) : The de            | egree of 27 is 1                                           |                          |                 |     |
|                 | 0.     |                                   | gree of multinomial is no                                  | t defined.               |                 |     |
|                 |        | a) Both A and B are tru           | e                                                          |                          | and B are false |     |
|                 |        | c) A is true, B is false          |                                                            | d) A is false            | e, B is true    |     |
|                 | 9.     |                                   | 4x + 5 is a trinomial with stant is a polynomial with      |                          |                 |     |
|                 |        | a) Both A and B are tru           |                                                            |                          | and B are false |     |
|                 |        | c) A is true, B is false          |                                                            | d) A is false            | e, B is true    |     |
|                 |        |                                   | 4                                                          |                          |                 |     |
|                 | 10.    | <b>Assertion</b> (A) : $6x^5 + 5$ | $x^4 + 3x^2 + \frac{4}{x} + 5$ is not a                    | polynomial or            | f degree 5.     |     |
|                 |        |                                   | nent of 'x' is a negative in                               | -                        |                 |     |
|                 |        |                                   | rrect, and R is the correct<br>rrect, but R is not the cor | -                        |                 |     |
|                 |        | c) A is correct and R is          |                                                            | пестехринин              |                 |     |
|                 | No Alt | d) A is incorrect and R           | is correct.                                                |                          |                 |     |
| 20              | 11.    | Assertion(A) : The deg            |                                                            |                          |                 | [ ] |
| 090 C           | 5      |                                   | e of zero polynomial is no                                 |                          |                 |     |
|                 |        |                                   | rrect, and R is the correct<br>rrect, but R is not the cor | -                        |                 |     |
| 180 170 250 350 |        | c) A is correct and R is          |                                                            |                          |                 |     |
| <u> </u>        |        | d) A is incorrect and R           |                                                            |                          |                 |     |
|                 |        | Matrix Matching type              | Questions :                                                |                          |                 |     |
|                 |        | Polynomial                        | Degree                                                     |                          | 12 a b c d      |     |
|                 | 12.    | X <sup>4</sup>                    | a) 1                                                       |                          | 13 a b c d      |     |
|                 | 13.    | x <sup>3</sup>                    | b) 2                                                       |                          | 14 a b c d      |     |
|                 | 14.    | x <sup>2</sup>                    | c) 3                                                       |                          | 15 a b c d      |     |
|                 |        |                                   |                                                            |                          |                 |     |

Varsity Education Management Pvt. Ltd.

34

15. x

d) 4

## LIKE TERMS, UNLIKE TERMS AND SUBSTITUTION

13 14 15 16 17 18 19 20

## AIM - 12

**SYNOPSIS** 

#### LIKE TERMS

- > The terms which contain the same literal factors are called like terms or similar terms.
- In like terms the numerical co-efficient may be different.

**Examples :** x, 7x, 9x ;  $3x^2yz$ , -  $7x^2yz$ ,  $\frac{2}{3}x^2yz$ 

#### **UNLIKE TERMS**

The terms which do not have the same literal factors are called unlike terms. **Examples :** 5x, 5y;  $6x^2$ , 7xy

#### SUBSTITUTION

The method of replacing numerical values in the place of literal numbers is called substitution. **Example :** Find the value of 6y at y = 3**Solution :**  $6y = 6 \times y = 6 \times 3 = 18$ .

## WORK SHEET - 12

c) x y,  $\frac{x}{v}$ 

d)  $\sqrt{x}, x^2$ 

d)  $a^2$ ,  $\frac{a^2}{9}$ 

d)3

d) 47

d) 3

d)  $\frac{3}{r^2}$ 

1

]

]

Γ

#### Straight objective type Questions

Among the following a pair of like terms is

a)  $2x^2$ , 2x b) 8ab, -6 ab

#### 2. Among the following a pair of unlike terms is

| a) 5xy, $\frac{xy}{9}$                     | b) 9 ab, 3ab               | c) xyz, $\frac{1}{xyz}$ |
|--------------------------------------------|----------------------------|-------------------------|
| If $x = 9$ , then $3x = a$ ) 6             | b) 12                      | c) 27                   |
| If $a = 5$ , $b = 11$ and $c = 8$<br>a) 14 | 3, then $a + b + c = b$ 24 | c) 35                   |
| If $x = -1$ , then $x^2 + x - a = 0$       | - 1 =<br>b) 1              | c) – 1                  |

#### One or more than one correct answer type Questions

b) 9x

Among the following have same literal factors are

a)  $3x^2$ 

3.

4.

5.

c) 
$$-\frac{2}{3}x^2$$

|        | os et st                                                                    |                                              | or 9 8 7 7             |                    |           |                          |
|--------|-----------------------------------------------------------------------------|----------------------------------------------|------------------------|--------------------|-----------|--------------------------|
| MA     | THEMATICS - V                                                               |                                              |                        |                    |           |                          |
| 7.     | If $x = -13$ , then $2x =$                                                  |                                              |                        |                    | [         | ]                        |
|        | a) – 15 b) – 26                                                             | •                                            | $x) 13 \times (-2) $   | d) 26              |           |                          |
| 8.     | <b>Statement</b> ( $\mathbf{A}$ ) : If a = 3, then 2a                       | + 5 = 11.                                    |                        |                    | [         | ]                        |
|        | Statement(B) : The method of re                                             | placing numerical                            | values in the place    | of literal numbers | is called |                          |
|        | substitution.<br>a) Both A and B are true                                   | 1                                            | b) Both A and B are    | falso              |           |                          |
|        | c) A is true, B is false                                                    |                                              | d) A is false, B is tr |                    |           |                          |
| 0      |                                                                             |                                              |                        | ue                 | r         | 1                        |
| 9.     | Statement (A) : If $a = 8$ , $b = -5$<br>Statement (B) : If $x = -2$ , then |                                              | F 0 + C = 0.           |                    | L         | 1                        |
|        | a) Both A and B are true                                                    |                                              | b) Both A and B are    | e false            |           | D.                       |
|        | c) A is true and B is false                                                 |                                              | d) A is false and B i  |                    |           |                          |
|        |                                                                             |                                              |                        |                    |           |                          |
| 10.    | Assertion(A) : The terms 5 abc ,                                            | $\frac{abc}{5}$ and 55 abc ar                | re called like terms.  |                    | [         | 1                        |
|        | <b>Reason(R)</b> : The terms which co                                       | 5                                            |                        |                    |           |                          |
|        | a) Both A and R are correct, and                                            |                                              |                        | i like ternis.     |           |                          |
|        | b) Both A and R are correct, but                                            |                                              | -                      |                    |           |                          |
|        | c) A is correct and R is incorrect                                          |                                              | d) A is incorrect and  | d R is correct.    |           | 2                        |
| 11.    | Assertion(A) : The terms 6a <sup>2</sup> bc,                                | 6ab <sup>2</sup> c, 6abc <sup>2</sup> are ca | alled unlike terms.    |                    |           | 1                        |
|        | <b>Reason(R)</b> : The terms which do                                       |                                              |                        | alled unlike terms |           |                          |
|        | a) Both A and R are correct, and                                            |                                              |                        |                    |           |                          |
|        | b) Both A and R are correct, but                                            | R is not the correc                          | t explanation of A     |                    |           |                          |
|        | c) A is correct and R is incorrect                                          | (                                            | d) A is incorrect and  | d R is correct.    |           |                          |
| HILLY? | Matrix Matching type Question                                               | ns:                                          |                        |                    |           | 12                       |
| N NO   | If $x = 3$ , $y = 2$ and $z = 5$ , then                                     |                                              |                        |                    |           |                          |
| 0      | Column - I                                                                  |                                              | Column - II            | 12 (a) (b)         | 500       | $\overline{\mathcal{A}}$ |
| ·      |                                                                             |                                              |                        |                    |           |                          |

|                 |     | If $x = 3$ , $y = 2$ and $z$                                                |
|-----------------|-----|-----------------------------------------------------------------------------|
| 350             |     | Column - I                                                                  |
| 1111/111<br>200 | 12. | $x^{y} + y^{x} =$ $x^{2} + y^{2} + z^{2} =$ $x + y + z =$ $x^{y} + z^{y} =$ |
|                 | 13. | $x^2 + y^2 + z^2 =$                                                         |
|                 | 14. | x + y + z =                                                                 |
| - 80            | 15. | $x^{y} + z^{y} =$                                                           |

- x + y + z =14.
  - 15.  $x^y + z^y =$

#### Do You Know ?

a) 38

b) 34

c) 17

d) 10

13

14

15

а

а

a

с

c

c

d

d

d

b

b

b

1)  $(a + b)^2 = a^2 + 2ab + b^2$ 2)  $(a-b)^2 = a^2 - 2ab + b^2$ 3)  $a^2 - b^2 = (a + b) (a - b).$ 4)  $(a + b)^2 = (a - b)^2 + 4ab$ 6)  $a^{2}+b^{2}=(a+b)^{2}-2ab$ 5)  $(a-b)^2 = (a+b)^2 - 4ab$ 7)  $a^{2}+b^{2}=(a-b)^{2}+2ab$ 8)  $(a^{2}+b)^{2} + (a-b)^{2} = 2a^{2} + 2b^{2} = 2(a^{2}+b^{2})$ 10)  $(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$ 9)  $(a+b)^2 - (a-b)^2 = 4ab$ 11)  $(a - b - c)^2 = a^2 + b^2 + c^2 - 2ab + 2bc - 2ca$  12)  $(-a - b - c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$ 36 Varsity Education Management Pvt. Ltd.

# IV.

# GEOMETRY

## **BASIC GEOMETRICAL CONCEPTS**

14 15 16 17 18 19 2

## AIM - 13

#### SYNOPSIS

#### POINT

A Point is a mark of position. It has no length, breadth and thickness. **Example :** We represent our state with a dot in India map. Here dot represents the position of the state and is called a point.

Point has no thickness or size, generally we should keep a dot as thin as possible to represent a point.

#### LINE SEGMENT

Fold a piece of paper and unfold it, you see a fold. This gives an idea about the line segment. It has two end points 'A' and 'B'.

Let 'A' and 'B' be two points in a plane, then the shortest path from A to B is called the line segment AB.

B

B

Line segment AB is same as line segment BA. It is denoted by  $\overline{AB}$  or  $\overline{BA}$ .

A line segment contains infinite number of points.Example : Edge of a box, edge of a post card.A line segment has a definite length, which can be measured.The measure of each line segment is a unique number called its length.

#### RAY

A line segment extended endlessly in one direction is called a ray. **Example :** The line segment AB, extended endlessly in the direction from A to B is a ray, denoted by  $\overrightarrow{AB}$  called a ray AB.

The ray AB has one end point, namely A, called its initial point.

Clearly, a ray has no definite length.

Usually  $\overrightarrow{AB}$  is not same as  $\overrightarrow{BA}$ 

BA is a ray with initial point 'B' and extends endlessly in the direction from 'B' to 'A'.

Α

A ray contains infinite number of points.

#### LINE

A line segment extended endlessly in both sides is called a line.

A line is denoted by  $\overrightarrow{AB}$  or  $\overrightarrow{BA}$  and called as line AB or line BA.

2 33 14 15 16 17 18 19 20

- A line has no end points, it contains infinite number of points. It has infinite length but no thickness. The line segment is a part of the line.
- The number of line segments possible from 'n' given points such that no three points

B

are collinear is  $\frac{n(n-1)}{2}$ .

A line and a line segment contains infinite points.

#### PLANE

A flat surface which extends endlessly in all directions is called a plane. A plane has infinite length and breadth but has no thickness.

#### PART OF A PLANE

A part of a plane has a boundary.

Example : The surface of the top of a table is a part of a plane, which has a boundary.
Triangle, Rectangle, Circle etc. are plane figures. We draw them in a plane and call as plane figures.
A plane has infinite length and breadth but no thickness.

Through a single point on a plane, we can draw infinite number of lines. A plane contains infinite lines.

#### SPACE

**Example :** 

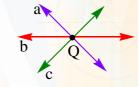
38

A ball that encloses a volumetric portion is called a part of a space.

- The portion enclosed by an infinitely large ball is called space.
- **Example :** Cube, Cuboid, Sphere, Prism are Space figures.
- Two straight lines cannot enclose a space.
- A space contains infinite number of planes.
  - A space has infinite length, breadth and also thickness.

#### **INTERSECTING LINES**

If two lines are having a common point, then they are said to be intersecting lines.



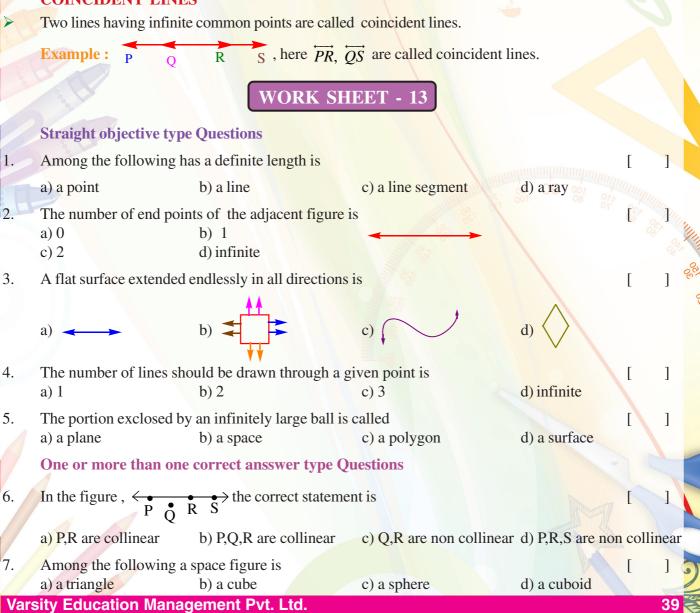



#### **CONCURRENT LINES**

If three or more lines are having the same common point, then those lines are called concurrent lines.

13 14 15 16 17 18 19 20




#### **PARALLEL LINES:**

Two lines '*l*' and 'm' are said to be parallel, if they lie in the same plane and do not have a common point. If '*l*' and 'm' are parallel, then we can represent them as l/l m.

**Example :** 

**Example :** 

#### **COINCIDENT LINES**



|                 | THEMATICS - V                                                                                                 |                         |                         |                                 |                         |  |  |
|-----------------|---------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|---------------------------------|-------------------------|--|--|
| 8.              | Statement(A) : The line                                                                                       | ~                       |                         |                                 |                         |  |  |
|                 | a) Both A and B are true                                                                                      | -                       | b) Both A and B are     | e false                         |                         |  |  |
|                 | c) A is true, B is false                                                                                      |                         | d) A is false, B is tru |                                 |                         |  |  |
| 9.              | Statement (A) : The dis<br>Statement (B) : The fig<br>a) Both A and B are true<br>c) A is true and B is false | ures having the same l  |                         | are called closed figu<br>false | [ ]<br>res.             |  |  |
| 10.             | Assertion(A) : The two                                                                                        |                         |                         |                                 |                         |  |  |
|                 | Reason(R) : The two lir                                                                                       |                         |                         | d coincident lines.             |                         |  |  |
|                 | <ul><li>a) Both A and R are corr</li><li>b) Both A and R are corr</li></ul>                                   |                         | -                       |                                 |                         |  |  |
|                 | c) A is correct and R is in                                                                                   |                         | d) A is incorrect and   | d R is correct.                 |                         |  |  |
| 11.             | Assertion(A) : A plane                                                                                        | has infinite length and | breadth .               |                                 |                         |  |  |
|                 | <b>Reason</b> ( <b>R</b> ) : The represe                                                                      |                         |                         |                                 |                         |  |  |
|                 | a) Both A and R are corr                                                                                      |                         |                         |                                 |                         |  |  |
|                 | b) Both A and R are correct, but R is not the correct explanation of A                                        |                         |                         |                                 |                         |  |  |
|                 | c) A is correct and R is incorrect d) A is incorrect and R is correct.                                        |                         |                         |                                 |                         |  |  |
|                 | Matrix Matching type                                                                                          | Questions               |                         |                                 |                         |  |  |
| 12              | Column - I                                                                                                    | sint of                 | Column - II             | 12 (a) (b) (                    | c                       |  |  |
| 12.             | The number of common concurrent lines is                                                                      | points of               | a) 0                    | 13 (a) (b) (                    | $\overline{\mathbf{O}}$ |  |  |
| ,13.            | The number of end point                                                                                       | ts of line segment is   | b) 1                    |                                 | $\overline{O}$          |  |  |
| 14.             | The number of measurer                                                                                        |                         | c) 2                    |                                 |                         |  |  |
| 15.             | The number of measurer                                                                                        | nents of a space is     | d) 3                    | 15 (a) (b) (                    | c $d$                   |  |  |
|                 |                                                                                                               |                         |                         |                                 |                         |  |  |
| 1111<br>20      |                                                                                                               | Do y                    | ou know                 |                                 |                         |  |  |
| 180 170 150 350 | Unit                                                                                                          | Symbol                  | Relation with metre     | •                               |                         |  |  |
|                 | Millimetre                                                                                                    | mm                      | $1mm  \frac{1}{1000}m$  |                                 | -                       |  |  |
|                 | Centimetre                                                                                                    | cm                      | $1cm  \frac{1}{100}m$   |                                 |                         |  |  |
|                 | Decimetre                                                                                                     | dm                      | $1dm  \frac{1}{10}m$    |                                 |                         |  |  |
|                 | Decametre                                                                                                     | dem                     | 1  dem = 10 m           |                                 |                         |  |  |
|                 | Hectametre                                                                                                    | hm                      | 1 hm = 100m             |                                 |                         |  |  |
|                 | Kilometre                                                                                                     | km                      | 1 km = 1000m            |                                 |                         |  |  |

16 **1**7 18 **1**9 20

1 km = 1000m km

1 cm = 10 mm; 1 dm = 10 cm; 1 m = 100 cm = 1000 mm.

Varsity Education Management Pvt. Ltd.

40



### AIM - 14

#### **SYNOPSIS:**

#### ANGLE

An angle is the union of two different rays having the same initial point.
Example :

In the figure,  $\overrightarrow{OA}$  and  $\overrightarrow{OB}$  are different rays having a common initial point 'O'.  $\overrightarrow{OA}$  and  $\overrightarrow{OB}$  are called arms (or) sides of the angle and the common initial point 'O' is called as the vertex of the angle.

0<

#### **TYPES OF ANGLES**

#### **ACUTE ANGLE**

An angle whose measure is less than 90° and greater than zero degrees, is called an acute angle i.e. If  $\theta$  is an acute angle, then 0°< $\theta$  <90°. Example :

Here |AOB is less than 90° and greater than zero degrees, so it is an acute angle.

#### **RIGHT ANGLE**

An angle whose measure is 90°, is called a right angle.

**Example :** 

Here |a| is 90°, so it is a right angle.

#### **OBTUSE ANGLE**

An angle whose measure is greater than 90° and less than 180° is called an obtuse angle.

**Example :** Here  $\underline{1}$  is more than 90° and less than 180°, so it is an obtuse angle.

#### **STRAIGHT ANGLE**

An angle whose measure is 180° is called a straight angle.

Example : A O B

Here  $\overrightarrow{OA}$ ,  $\overrightarrow{OB}$  are two opposite rays, AOB is a straight line and |AOB| is a straight angle. A straight angle = Two right angles.

#### **REFLEX ANGLE**

An angle whose measure is greater than 180° and less than 360° is called a reflex angle.

**Example :** 

Here AOB is more than 180° and less than 360°, so it is a reflex angle.

#### **COMPLETE ANGLE**

B

An angle whose measure is 360° is called a complete angle.

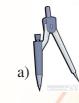
Example : 🔶 Å B ► Here |AOB is 360°.

A complete angle = Two straight angles = Four right angles.

#### **ZERO ANGLE**

An angle whose measure is 0° is called a zero angle.

Here  $|AOB| = 0^{\circ}$ . **Example :** A  $\mathbf{O}$ 


The instrument used to measure the angles is Protractor.

#### WORK SHEET - 14

#### **Straight objective type Questions :**

The instrument used to measure the angles is

An angle whose measure is 180° is called



a) 150°

2.

42



b) reflex angle





d) straight angle

]

1

#### 3. Among the following the symbol represents a right angle is

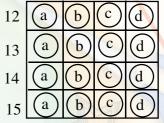


a) obstuse angle





c) right angle


The measure of the angle between the hands of a clock at 5 O' clock is b) 180° c) 200°

d) 250°

d) L M N

|   |     |                                                                                                                                                                                                                                                                              |                                                                       | MATHEMATICS -                 | V                                       |
|---|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------|-----------------------------------------|
|   | 5.  | The two rays forming an angle are called<br>a) the sides b) the vertices                                                                                                                                                                                                     | c) the arms                                                           | d) both a,c                   |                                         |
|   |     | One or more than one correct answer type (                                                                                                                                                                                                                                   | Questions                                                             |                               |                                         |
|   | 6.  | Among the following an obtuse angle is<br>a) 89° b) 91°                                                                                                                                                                                                                      | c) 181°                                                               | d) 179°                       |                                         |
|   | 7.  | The measure of a complete angle isa) 360°b) four right angles                                                                                                                                                                                                                | c) two obtuse angles                                                  | [ ]<br>d) two straight angles |                                         |
|   | 8.  | Statement(A) : The union of two different rays                                                                                                                                                                                                                               | s having the same initial p                                           | oint is called an angle.      |                                         |
|   |     | Statement(B) : The symbolic representation of<br>a) Both A and B are true<br>c) A is true, B is false                                                                                                                                                                        | f an angle is ∠.<br>b) Both A and B are f<br>d) A is false, B is true |                               |                                         |
| B | 9.  | <ul> <li>Statement (A) : The common end point of an a</li> <li>Statement (B) : The measure of an angle betw</li> <li>a) Both A and B are true</li> <li>c) A is true and B is false</li> </ul>                                                                                |                                                                       | alse                          |                                         |
|   | 10. | Assertion(A) : If $ \underline{A}  = 225^{\circ}$ , then it is called a <b>Reason(R)</b> : If the measure of an angle is lies bet a) Both A and R are correct, and R is the correct b) Both A and R are correct, but R is not the correct c) A is correct and R is incorrect | tween 180° and 360°, then i<br>ect explanation of A                   |                               |                                         |
|   | 11. | Assertion(A) : If $[S = 89^\circ$ , then it is called an a<br>Reason(R) : The measure of an angle is greate<br>a) Both A and R are correct, and R is the correct<br>b) Both A and R are correct, but R is not the correct<br>c) A is correct and R is incorrect              | r than 0° is called an acute<br>ect explanation of A                  | 05^                           |                                         |
|   |     | Matrix Matching type Questions                                                                                                                                                                                                                                               |                                                                       |                               | 111111111111111111111111111111111111111 |
|   |     | Geometrical figures                                                                                                                                                                                                                                                          | Name of the angles                                                    |                               | 0 100                                   |
|   | 12. | A O B                                                                                                                                                                                                                                                                        | a) a complete angle                                                   |                               |                                         |
|   |     | <b>A</b>                                                                                                                                                                                                                                                                     |                                                                       | 12 <b>a b c d</b>             |                                         |

b) a straight angle



43

17 18 19 20

c) a reflex angle

d) a zero angle

Varsity Education Management Pvt. Ltd.

13.

14.

15.

В

O A B

O A B

## TRIANGLES

## AIM - 15

SYNOPSIS

### **CLOSED FIGURE**

If the start and end points of a figure are same, then it is called a closed figure.

12 13 14 15 16 17 18 19 20



### SIMPLE CLOSED FIGURE

A closed figure which does not cross it self is called a simple closed figure.



## POLYGON

A simple closed figure bounded by line segments is called a Polygon.

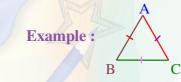
# Examples :

### TRIANGLE

A polygon with three sides is called a triangle. The symbol for triangle is ' $\Delta$ '.

E

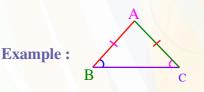
44




We read as 'triangle ABC' and it is denoted by  $\Delta ABC$ .

### CLASSIFICATION OF TRIANGLES ACCORDING TO THE SIDES

### **EQUILATERAL TRIANGLE**

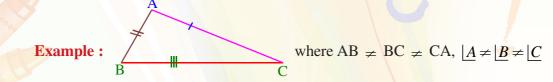

A triangle whose three sides are equal in length is called an 'Equilateral triangle'. All the angles in the equilateral triangle are equal.



 $\overline{AB} = \overline{BC} = \overline{CA}$  and  $|\underline{A}| = |\underline{B}| = |\underline{C}| = 60^{\circ}$ 

#### **ISOSCELES TRIANGLE**

A triangle in which two sides are equal in length is called 'Isosceles triangle'. In an isosceles triangle the unequal side is called the base of the triangle. The base angles of an isosceles triangle are congruent.




Here  $\overline{AB} = \overline{AC}$ ,  $\underline{B} = \underline{C}$ , Base =  $\overline{BC}$ 

3 14 15 16 17 18 19 20

#### SCALENE TRIANGLE

If no two sides of the triangle are equal in length, then it is called a Scalene triangle.



#### **CLASSIFICATION OF TRIANGLES ACCORDING TO THE ANGLES**

#### **ACUTE ANGLED TRIANGLE**

If each angle of a triangle is an acute angle, then it is called an 'Acute angled triangle'.



B

Measure all angles and observe each angle is less than 90°.

#### **RIGHT ANGLED TRIANGLE**

A triangle in which one of its angles is a right angle is called 'Right angled triangle'.

In this triangle  $|\mathbf{B} = 90^\circ$ , therefore it is a right angled triangle.

In a right angled triangle, the opposite side of the right angle is called 'Hypotenuse'.

#### **OBTUSE ANGLED TRIANGLE**

A triangle in which one of its angles is an obtuse angle is called 'Obtuse angled triangle'.

In the figure  $|B| > 90^\circ$ , so it is an obtuse angled triangle.

#### 13 14 15 16 **1**7 18 **1**9 20 **MATHEMATICS - V EXTERIOR ANGLE OF A TRIANGLE** An exterior angle is formed by one side of a triangle and the extension of its 120° adjacent side of the triangle. In the figure ACD is the exterior angle. D **INEOUALITIES OF A TRIANGLE** The sum of the lengths of any two sides of a triangle is greater than the length of the third side. i.e., a + b > c, b + c > a, c + a > bThe difference of the lengths of any two sides of a triangle is smaller than the length of the third side. i.e., |a-b| < c, |b-c| < a, |c-a| < bWORK SHEET - 15 **Straight objective type Questions** A simple closed figure formed by three line segments is called 1. a) a triangle b) a circle c) a quadrilateral d) a sphere The symbolic representation of a triangle is c) d) $\bigcirc$ a) $\mathbf{Z}$ If the lengths of all sides of a triangle are different, then it is called 3. a) an isosceles triangle b) a scalene triangle c) an equilateral triangle d) can't say The number of angles exists in the figure is a) 1 b) 2 c) 3 d) 4 If $|A+|C| = 120^\circ$ , $|B+|C| = 140^\circ$ and $|A+|B| = 100^\circ$ , then |A,|B| and |C| respectively are 5. a) 60°, 40°, 80° b) 40°.60°.80° c) $80^{\circ}.40^{\circ}.60^{\circ}$ d) $60^{\circ}, 80^{\circ}, 40^{\circ}$ One or more than one correct answer type Questions 6. The sum of the measures of three angles in a triangle is a) 180° b) two acute angles c) two right angles d) a straight angle A triangle should have 7. a) three sides b) three vertices c) at least two acute angles d) two right angles Statement(A): If one of the measure of an angle in a triangle is 91°, then it is an obtuse angled triangle. Statement(B): In $\triangle ABC$ , if $\underline{A} = 30^{\circ}$ and $\underline{B} = 50^{\circ}$ , then $\underline{C} = 120^{\circ}$ . b) Both A and B are false a) Both A and B are true c) A is true, B is false d) A is false, B is true Varsity Education Management Pvt. Ltd 46

|                                                                                                                        | MATHEMATICS - V                                                              |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Statement (A) : The sum of the lengths of any third side.                                                              | two sides of a triangle is greater than the length of the [ ]                |
| <b>Statement</b> (B) : In $\triangle ABC$ , $\overline{AB} - \overline{BC} > \overline{AC}$ .                          |                                                                              |
| a) Both A and B are true                                                                                               | b) Both A and B are false                                                    |
| c) A is true and B is false                                                                                            | d) A is false and B is true                                                  |
| D. Assertion(A) : If $ \underline{A}  = 60^{\circ}$ , $ \underline{B}  = 50^{\circ}$ and $ \underline{C}  = 7^{\circ}$ | $0^{\circ}$ , then $\triangle ABC$ is an acute angled triangle. [ ]          |
| <b>Reason(R)</b> : In an acute angled triangle the me                                                                  | easure of each angle lies between $0^\circ$ and $90^\circ$ .                 |
| a) Both A and R are correct, and R is the corre                                                                        | ect explanation of A                                                         |
| b) Both A and R are correct, but R is not the co                                                                       |                                                                              |
| c) A is correct and R is incorrect                                                                                     | d) A is incorrect and R is correct.                                          |
| Assertion(A): In $\Delta PQR$ , if $ \underline{P}  = 45^\circ$ , $ \underline{Q}  = 55^\circ$                         | ° and $ \underline{R}  = 80^\circ$ , then the measure of exterior angle when |
| $\overline{PO}$ produced is 100°.                                                                                      |                                                                              |
| ~ 1                                                                                                                    | erior angle is equal to sum of its opposite interior angles.                 |
| a) Both A and R are correct, and R is the corre                                                                        |                                                                              |
| b) Both A and R are correct, but R is not the co                                                                       |                                                                              |
| c) A is correct and R is incorrect                                                                                     | d) A is incorrect and R is correct.                                          |
| Matrix Matching type Questions                                                                                         |                                                                              |
| The measure of angles / sides                                                                                          | Name of the triangle                                                         |
| 2. 90°, 45°, 45°                                                                                                       | a) acute angled triangle 12 a b c d                                          |
| 3. 9 cm, 9 cm, 9 cm                                                                                                    | b) right angled triangle 13 a b c d                                          |
| 4. 100°, <mark>35</mark> °, 45°                                                                                        | c) scalene triangle 14 a b c d                                               |
| 5. 3 cm, 4 cm, 5 cm                                                                                                    | d) equilateral triangle 15 (a) (b) (c) (d)                                   |
|                                                                                                                        |                                                                              |
| Tru                                                                                                                    | 7 This                                                                       |
| IIy                                                                                                                    |                                                                              |

11 12 13 14 15 16 17 18 19 20

How many number of triangles are there in the adjacent figure . ?

Do You Know?

B

47

In the figure,  $\underline{B} = 90^{\circ}$  and  $\overline{AC}$  is the hypotenuse, then according to Pythagoras theorem  $AC^2 = AB^2 + BC^2$ .

## AIM - 16

## QUADRILATERALS

11 12 13 14 15 16 **1**7 18 **1**9 20

#### SYNOPSIS

#### QUADRILATERAL

A quadrilateral is a closed figure formed by four line segments such that no two line segments cross each other except at their end points.

#### IN A QUADRILATERAL ABCD

- Four sides  $\overline{AB}, \overline{BC}, \overline{CD}, \overline{DA}$ .
- Four angles  $[\underline{A}, \underline{B}, \underline{C}, \underline{D}]$
- Four vertices A,B,C,D.
- Two diagonals  $\overline{AC}, \overline{BD}$ .
- Adjacent sides :  $\overline{AB}$  and  $\overline{BC}$ ;  $\overline{BC}$  and  $\overline{CD}$ ;  $\overline{CD}$  and  $\overline{DA}$ ;  $\overline{DA}$  and  $\overline{AB}$ .
  - Adjacent angles :  $|\underline{A}|$  and  $|\underline{B}; |\underline{B}|$  and  $|\underline{C}; |\underline{C}|$  and  $|\underline{D}; |\underline{D}|$  and  $|\underline{A}|$ .
  - Opposite sides :  $\overline{AB}$  and  $\overline{CD}$ ;  $\overline{AD}$  and  $\overline{BC}$ .
  - Opposite angles :  $\underline{A}$  and  $\underline{C}$ ;  $\underline{B}$  and  $\underline{D}$ .
  - The sum of the interior angles in a quadrilateral is  $360^{\circ}$ .(i.e.  $|\underline{A} + |\underline{B} + |\underline{C} + |\underline{D} = 360^{\circ}$ ) Each diagonal divides the quadrilateral into two triangles.

#### TYPES OF QUADRILATERALS

#### TRAPEZIUM

- A trapezium is a quadrilateral in which one pair of opposite sides are parallel.
- In a trapezium ABCD, the parallel sides ( $\overline{AB}$ ,  $\overline{CD}$ ) are called the **bases** of
- the trapezium and the other two sides are called its non-parallel sides(legs),  $(\overline{BD}, \overline{AC})$ .

#### **ISOSCELES TRAPEZIUM**

- A trapezium in which the non parallel sides are equal to each other is known as an isosceles trapezium.
- In the isosceles trapezium ABCD,  $\overline{AB} \parallel \overline{CD}$ , AD =BC In an isosceles trapezium diagonals are equal in length.

#### KITE

48

A quadrilateral having two pairs of equal adjacent sides but unequal opposite sides is called a kite. ABCD is a kite with  $\overline{AB} = \overline{BC} \& \overline{AD} = \overline{CD}$ .

The diagonals of a kite are perpendicular to each other i.e.,  $\overline{BD} \perp \overline{AC}$ .

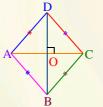
#### Varsity Education Management Pvt. Ltd

C

D

0

]


16 17 18 19 20

#### PARALLELOGRAM

- A quadrilateral in which both pairs of opposite sides are parallel is called a parallelogram.
- The diagonals of a parallelogram bisect each other (AO = OC, BO = OD).
   RECTANGLE
- A parallelogram in which one angle is a right angle is called a rectangle.
- In a rectangle all angles are equal and each angle is 90°.
- The lengths of the diagonals of a rectangle are equal and bisect each other.
- Opposite sides are equal.
  - Opposite angles are equal.

#### RHOMBUS

A parallelogram in which two adjacent sides are equal is called a rhombus.



Each diagonal of a rhombus divides it into two congruent isosceles triangles. In a rhombus lengths of all sides are equal

#### **SQUARE**

A rectangle in which adjacent sides are equal is called a square.

#### (OR)

A Rhombus in which one of its angles is a right angle is called a square.

In a square all sides are equal.

Each angle is equal to 90°

## WORK SHEET - 16

#### Straight objective type Questions

1. The name of the figure is

2

- a) a triangleb) a circlec) a quadrilaterald) an hexagon
- A quadrilateral whose two pairs of opposite sides are not parallel is a) a square b) a trapezium c) a parallelogram d) a rectangle
- A quadrilateral whose two pairs of adjacent sides are equal but opposite sides are unequal is a) a rhombus b) a square c) a rectangle d) a kite

|                                               | THEMATICS - V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.                                            | If one angle of a para<br>a) a trapezium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | llelogram is 90°, then it<br>b) a kite                                                                                                                                                                                                                                                                                                               | is<br>c) a rectangle                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d) a rhombus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5.                                            | The lengths of all side<br>a) a trapezium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | es are equal in<br>b) a rhombus                                                                                                                                                                                                                                                                                                                      | c) a rectangle                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d) a kite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                               | One or more than o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ne correct answer type                                                                                                                                                                                                                                                                                                                               | Questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6.                                            | The lengths of two pa<br>a) a square                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | irs of opposite sides are<br>b) a parallelogram                                                                                                                                                                                                                                                                                                      | equal in<br>c) a rectangle                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [<br>d) a rhombus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7.                                            | The measure of each a) a kite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | angle is a right angle in<br>b) a square                                                                                                                                                                                                                                                                                                             | c) a rhombus                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d) a rectangle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 8.                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                      | of non parallel sides are                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e equal, then it is called an isosc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                               | trapez<br><b>Statement(B) :</b> In an<br>a) Both A and B are to<br>c) A is true, B is false                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | y quadrilateral, each dia<br>rue                                                                                                                                                                                                                                                                                                                     | gonal divides it into tw<br>b) Both A and B<br>d) A is false, B is                                                                                                                                                                                                                                                                                                                                                                                                                | are false                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 9.                                            | Statement (A) : In a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | trapezium, the lengths or                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                               | Statement (B) : The<br>a) Both A and B are t<br>c) A is true and B is f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rue                                                                                                                                                                                                                                                                                                                                                  | b) Both A and B<br>d) A is false and                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                               | <ul> <li>a) Both A and B are t</li> <li>c) A is true and B is f</li> <li>Assertion(A) : In the</li> <li>Reason(R) : The sun</li> <li>a) Both A and R are c</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rue<br>alse<br>figure, if $ \underline{P} +  \underline{Q} +  \underline{R} $<br>n of the measures of four<br>correct, and R is the cor<br>correct, but R is not the                                                                                                                                                                                 | b) Both A and B<br>d) A is false and<br>= 280°, then $ S  = 80$<br>r angles in a quadrilate<br>rect explanation of A<br>correct explanation of                                                                                                                                                                                                                                                                                                                                    | B is true<br>$P^{\circ}$ .<br>eral is 360°.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                               | <ul> <li>a) Both A and B are t</li> <li>c) A is true and B is f</li> <li>Assertion(A) : In the</li> <li>Reason(R) : The sun</li> <li>a) Both A and R are o</li> <li>b) Both A and R are o</li> <li>c) A is correct and R</li> <li>Assertion(A) : If AB</li> <li>Reason(R) : In a para</li> <li>a) Both A and R are o</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rue<br>alse<br>figure, if $ \underline{P} +  \underline{Q} +  \underline{R} $<br>n of the measures of four<br>correct, and R is the corr<br>correct, but R is not the<br>is incorrect<br>CD is a parallelogram,<br>allelogram, the measures<br>correct, and R is the corr<br>correct, but R is not the                                               | b) Both A and B<br>d) A is false and<br>= 280°, then $ S  = 80$<br>r angles in a quadrilate<br>rect explanation of A<br>correct explanation of<br>d) A is incorrect<br>, then $ A -  C  = 0^\circ$ .<br>s of opposite angles are<br>rect explanation of A<br>correct explanation of A                                                                                                                                                                                             | B is true<br>$P^{\circ}$ .<br>eral is 360°.<br>P<br>A<br>and R is correct.<br>[<br>e equal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                               | <ul> <li>a) Both A and B are t</li> <li>c) A is true and B is f</li> <li>Assertion(A) : In the</li> <li>Reason(R) : The sun</li> <li>a) Both A and R are o</li> <li>b) Both A and R are o</li> <li>c) A is correct and R</li> <li>Assertion(A) : If AB</li> <li>Reason(R) : In a para</li> <li>a) Both A and R are o</li> <li>b) Both A and R are o</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rue<br>alse<br>figure, if $ \underline{P} +  \underline{Q} +  \underline{R} $<br>n of the measures of four<br>correct, and R is the corr<br>correct, but R is not the<br>is incorrect<br>CD is a parallelogram,<br>allelogram, the measures<br>correct, and R is the corr<br>correct, but R is not the<br>is incorrect                               | b) Both A and B<br>d) A is false and<br>= 280°, then $ S  = 80$<br>r angles in a quadrilate<br>rect explanation of A<br>correct explanation of<br>d) A is incorrect<br>, then $ A -  C  = 0^\circ$ .<br>s of opposite angles are<br>rect explanation of A<br>correct explanation of A                                                                                                                                                                                             | B is true<br>$P^{\circ}$ .<br>eral is 360°.<br>P = Q<br>and R is correct.<br>[<br>e equal.<br>E A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                               | a) Both A and B are t<br>c) A is true and B is f<br>Assertion(A) :In the<br>Reason(R) : The sum<br>a) Both A and R are o<br>b) Both A and R are o<br>c) A is correct and R<br>Assertion(A) : If AB<br>Reason(R) : In a para<br>a) Both A and R are o<br>b) Both A and R are o<br>c) A is correct and R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rue<br>alse<br>figure, if $ \underline{P} +  \underline{Q} +  \underline{R} $<br>n of the measures of four<br>correct, and R is the corr<br>correct, but R is not the<br>is incorrect<br>CD is a parallelogram,<br>allelogram, the measures<br>correct, and R is the corr<br>correct, but R is not the<br>is incorrect<br><b>pe Questions</b>        | b) Both A and B<br>d) A is false and<br>= 280°, then $ S  = 80$<br>r angles in a quadrilate<br>rect explanation of A<br>correct explanation of<br>d) A is incorrect<br>, then $ A -  C  = 0^\circ$ .<br>s of opposite angles are<br>rect explanation of A<br>correct explanation of A                                                                                                                                                                                             | B is true<br>$P^{\circ}$ .<br>eral is 360°.<br>P = Q<br>and R is correct.<br>F = P = Q<br>and R is correct.<br>F = P = Q<br>F = Q |
|                                               | <ul> <li>a) Both A and B are t</li> <li>c) A is true and B is f</li> <li>Assertion(A) : In the</li> <li>Reason(R) : The sum</li> <li>a) Both A and R are of</li> <li>b) Both A and R are of</li> <li>c) A is correct and R</li> <li>Assertion(A) : If AB</li> <li>Reason(R) : In a para</li> <li>a) Both A and R are of</li> <li>b) Both A and R are of</li> <li>c) A is correct and R</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rue<br>alse<br>figure, if $ P  +  Q  +  R $<br>n of the measures of four<br>correct, and R is the corr<br>correct, but R is not the<br>is incorrect<br>CD is a parallelogram,<br>allelogram, the measures<br>correct, and R is the corr<br>correct, but R is not the<br>is incorrect<br><b>pe Questions</b><br>agonals are equal in                  | b) Both A and B<br>d) A is false and<br>= 280°, then $ S  = 80$<br>r angles in a quadrilate<br>rect explanation of A<br>correct explanation of<br>d) A is incorrect<br>, then $ A -  C  = 0^\circ$ .<br>s of opposite angles are<br>rect explanation of A<br>correct explanation of A<br>correct explanation of A                                                                                                                                                                 | B is true<br>P°. S R [<br>eral is 360°. $P$ Q<br>and R is correct.<br>E e equal.<br>TA<br>and R is correct.<br>12 a b c d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10.                                           | <ul> <li>a) Both A and B are t</li> <li>c) A is true and B is f</li> <li>Assertion(A) : In the</li> <li>Reason(R) : The sum</li> <li>a) Both A and R are o</li> <li>b) Both A and R are o</li> <li>c) A is correct and R</li> <li>Assertion(A) : If AB</li> <li>Reason(R) : In a para</li> <li>a) Both A and R are o</li> <li>b) Both A and R are o</li> <li>c) A is correct and R</li> <li>Assertion(A) : If AB</li> <li>Reason(R) : In a para</li> <li>a) Both A and R are o</li> <li>b) Both A and R are o</li> <li>c) A is correct and R</li> <li>d) Both A and R are o</li> </ul> | rue<br>alse<br>figure, if $ P  +  Q  +  R $<br>n of the measures of four<br>correct, and R is the corr<br>correct, but R is not the<br>is incorrect<br>CD is a parallelogram,<br>allelogram, the measures<br>correct, and R is the corr<br>correct, but R is not the<br>is incorrect<br><b>pe Questions</b><br>agonals are equal in<br>each other in | b) Both A and B<br>d) A is false and<br>= 280°, then $ S  = 80$<br>r angles in a quadrilate<br>rect explanation of A<br>correct explanation of<br>d) A is incorrect<br>, then $ A -  C  = 0^\circ$ .<br>s of opposite angles are<br>rect explanation of A<br>correct explanation of A<br>correct explanation of<br>d) A is incorrect                                                                                                                                              | B is true<br>P <sup>o</sup> . S R [<br>eral is 360°. $P$ Q<br>and R is correct.<br>I<br>and R is correct.<br>12 a b c d<br>13 a b c d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 10.<br>10.<br>11.<br>000<br>11.<br>12.<br>13. | <ul> <li>a) Both A and B are t</li> <li>c) A is true and B is f</li> <li>Assertion(A) : In the</li> <li>Reason(R) : The sum</li> <li>a) Both A and R are o</li> <li>b) Both A and R are o</li> <li>c) A is correct and R</li> <li>Assertion(A) : If AB</li> <li>Reason(R) : In a para</li> <li>a) Both A and R are o</li> <li>b) Both A and R are o</li> <li>c) A is correct and R</li> <li>Assertion(A) : If AB</li> <li>Reason(R) : In a para</li> <li>a) Both A and R are o</li> <li>c) A is correct and R</li> <li>Matrix Matching ty</li> <li>The lengths of the dia</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rue<br>alse<br>figure, if $ P  +  Q  +  R $<br>n of the measures of four<br>correct, and R is the corr<br>correct, but R is not the<br>is incorrect<br>CD is a parallelogram,<br>allelogram, the measures<br>correct, and R is the corr<br>correct, but R is not the<br>is incorrect<br><b>pe Questions</b><br>agonals are equal in<br>each other in | b) Both A and B<br>d) A is false and<br>= 280°, then $ S  = 80$<br>r angles in a quadrilate<br>rect explanation of A<br>correct explanation of A<br>d) A is incorrect<br>, then $ A -  C  = 0^\circ$ .<br>s of opposite angles are<br>rect explanation of A<br>correct explanation of A<br>b) a rectangle | B is true<br>P°. S R [<br>eral is 360°. $P$ Q<br>and R is correct.<br>E e equal.<br>TA<br>and R is correct.<br>12 a b c d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Varsity Education Management Pvt. Ltd.

## CIRCLES

3 14 15 16 17 18 19 <u>20</u>

## AIM - 17

#### SYNOPSIS

#### CIRCLE

- A circle is a set of points in a plane at a given distance to a given point in the same plane.
  - Circle is a closed figure. Example : Bangle, Wheel



#### **RADIUS OF THE CIRCLE**

A line segment joining the centre of a circle to any point on the circle, is called radius of the circle. It is denoted by **'r'**.

A circle has unlimited number of radii.

#### **CONGRUENT CIRCLES**

Two circles having the same radii are called congruent circles.





#### **CHORD OF THE CIRCLE**

The line segment joining any two points on the circle is called chord of a circle.



Here  $\overline{AB}$  is called chord of the circle.

#### **DIAMETER OF THE CIRCLE**

The chord passing through center of the circle is called diameter of the circle.



Here  $\overline{AB}$  is the diameter of the circle.

The circle has unlimited number of diameters. The diameter is the longest chord in a circle. The diameter of a circle is twice its radius.

#### SECANT OF THE CIRCLE

A line intersecting a circle at two points is called secant of a circle.

13 14 15 16 **1**7 18 **1**9 20

 $\rightarrow_{\rm B}$  Here  $\overrightarrow{AB}$  is a secant.

#### TANGENT OF THE CIRCLE

A line which touches a circle at only one point is called tangent of the circle. Here l' is the tangent of the circle.

#### **ARC OF A CIRCLE**

- A part of a circle is called arc of the circle.
- An arc which is less than half of the circle is called Minor arc.
- An arc which is more than half of the circle is called a Major arc
- An arc is denoted by the symbol  $\frown$  and is read as 'arc'.  $\overrightarrow{AB}$  is read as 'Arc AB'.

#### SEMICIRCLE

- An arc which is exactly half of the circle is called semi circle.
- The angle in a semicircle is 90°.
- The angle in a semicircle at the centre is 180°.

#### **SECTOR OF A CIRCLE**

The sector is a figure formed by all the points on  $\overline{OA}$ , arc AXB and  $\overline{OB}$ 

It is the union of  $\overline{OA}$ , arc AXB and  $\overline{OB}$ 

#### **CIRCUMFERENCE OF THE CIRCLE**

The length of the circle is called circumference of the circle. It can be denoted by 'C'. The circumference of the circle is  $\pi$  times its diameter or  $2\pi$  times its radius i.e.  $C = \pi d$  or  $2\pi r$ .

## WORK SHEET - 17

#### Straight objective type Questions

The length of *OA* in the figure is called 1. a) radius b) diameter ំ c) circumference d) area 2. The longest chord of a circle is called b) diameter a) secant c) tangent d) arc The line segment joining the centre to any point on the circumference of a circle is called a) radius b) diameter c) perimeter d) area The fixed point at the midle of the circle is called a) radius b) exterior point c) centre d) end point The region bounded by two radii and an arc is called a) a chord b) a secant c) a tangent d) a sector Varsity Education Management Pvt. Ltd. 52

#### **MATHEMATICS - V** One or more than one correct answer type Questions 6. The angle in a semicircle is 1 a) a right angle b) a straight angle c) 90° d) one fourth of complete angle A circle should have 7. a) infinite radii b) infinite centres c) infinite chords d) infinite diameters 8. Statement(A): The area enclosed by the circumference is called the interior of the circle. Statement(B): The circles with same centre and different radii are called concentric circles a) Both A and B are true b) Both A and B are false c) A is true, B is false d) A is false, B is true 9. **Statement** (A) : The diameter of a circle does not passing through the centre of a circle. Statement (B): The diameter divides a circle into two equal halves and each half is called a semicircle. b) Both A and B are false a) Both A and B are true c) A is true and B is false d) A is false and B is true 10. Assertion(A): If the radius of a circle is 9 cm, then its diameter is 18 cm. **Reason(R)**: The diameter of a circle is twice of its radius. a) Both A and R correct and R is the correct explanation of A b) Both A and R correct but R is not the correct explanation of A c) A is correct, R is incorrect d) A is incorrect, R is correct Assertion(A): The number of chords drawn to a circle are finite. **Reason**(**R**): The number of points lies on a circle is infinite. a) Both A and R correct and R is the correct explanation of A b) Both A and R correct but R is not the correct explanation of A c) A is correct, R is incorrect d) A is incorrect, R is correct **Matrix Matching type Questions** In the figure 12 b 12. $\overline{AB}$ is a) a secant 13 b $\stackrel{\leftrightarrow}{PO}$ is С a 13. b) a chord b 14 a С $\overline{CD}$ is 14. c) a tangent 15 15. $\leftrightarrow l$ is d) a diameter **Do You Know ?** In the figure the shaded region is called "Major segment" and the unshaded region is called "Minor segment".

13 14 15 16 17 18 19 <u>20</u>

## **PERIMETER AND AREA**

## AIM - 18

#### SYNOPSIS

#### AREA

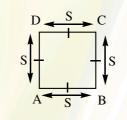
The area of a simple closed figure is the measure of the region enclosed by the boundary of the figure. Area is measured in 'square units'.

#### PERIMETER

The perimeter of a simple closed figure is the sum of the length of all boundaries

13 14 15 16 17 18 19 20

Perimeter is measured in 'units'.


#### RECTANGLE

Perimeter of rectangle = 2(l + b) units, where 'l' is length and 'b' is breadth

Area of rectangle  $(A) = l \times b$  sq units.

#### SQUARE

Perimeter of square =  $4 \times \text{side} = 4S$  units. Area of square (A) = side × side. =  $S \times S$ =  $S^2$  sq.units.



#### PARALLELOGRAM

Perimeter of parallelogram is "sum of all its sides ". Area of the parallelogram is equal to the product of its base (b) and corresponding height (h). i.e., A= bh sq units.

#### TRIANGLE

Perimeter of triangle is, "sum of the lengths of three sides of the triangle"

Area of triangle =  $\frac{1}{2}$  bh sq. units,

where b is base of triangle and 'h' is height of the triangle.

#### CIRCLE

54

Circumference (or) perimeter of the circle =  $2\pi r$  units, where 'r' is radius of circle and  $\pi = \frac{22}{7}$  (or) 3.14

Area of circle =  $\pi r^2 sq$ . units. Area of circle in terms of diameter

(A) = 
$$\pi \left(\frac{d}{2}\right)^2$$
 =  $\pi \frac{d^2}{4}$  sq units

Varsity Education Management Pvt. Ltd

А

D

D

height

base

C

height

В

В

В

С

**MATHEMATICS - V** WORK SHEET - 18 **Straight objective type Questions :** The area of the figure is 1. N  $\mathbf{M}$ a) 18 sq cms b) 81 cms 9cms c) 36 cms d) 81 sq cms 2. The perimeter of the figure is a) 32 cms b) 24 cms 4cms c) 20 cms d) 32 sq cms R The measure of the region enclosed by the boundary of the figure is called its 3. c) volume a) area b) perimeter d) length The area of the figure is a) 48 sq cms b) 72 sq cms c) 96 sq cms d) 40 sq cms 12cms If AB + BC = 18 cms, BC + CA = 16 cms and CA + AB = 12 cms, then the perimeter of  $\triangle ABC$  is a) 46 cms b) 92 cms c) 72 cms d) 23 cms One or more than one correct answer type Questions : 6. If the length of the side of a square is 6 cms, then its perimeter is a) 24 cms b)  $4 \times 6$  cms c)  $2 \times 12$  cms d) 48 cms 7. If 'r' is the radius and 'd' is the diameter of a circle, then its perimeter is a)  $2\pi d$ b) *π* d c)  $\pi$ r d)  $2\pi r$ 8. Statement(A): The sum of the lengths of all sides of a triangle is called its perimeter. **Statement(B)**:  $\pi = \frac{22}{7}$  (or) 3.14.(approximately). a) Both A and B are true b) Both A and B are false c) A is true, B is false d) A is false, B is true 9. **Statement** (A): If 'l' is the length and 'b' is the breadth of a rectangle, then its perimeter is (l + b). Statement (B): The area of a geometrical figure is measured in square units. 1 a) Both A and B are true b) Both A and B are false c) A is true and B is false d) A is false and B is true

13 14 15 16 17 18 19 20

- 10. Assertion(A) : If the radius of a circle is 14 cms, then its perimeter is 88 cms. Reason(R) : If 'r' is the radius of a circle, then its perimeter is  $4\pi$  r. a) Both A and R are correct, and R is the correct explanation of A
  - b) Both A and R are correct, but R is not the correct explanation of A
  - c) A is correct and R is incorrect d) A is incorrect and R is correct.

#### 12 13 14 15 16 **1**7 18 **1**9 20 **MATHEMATICS - V** 11. Assertion(A) : A circle is a simple closed figure. ] ſ **Reason**(**R**): The circumference of a circle is $\pi$ times its diameter. a) Both A and R are correct, and R is the correct explanation of A b) Both A and R are correct, but R is not the correct explanation of A c) A is correct and R is incorrect d) A is incorrect and R is correct. **Matrix Matching type Questions :** a) $\frac{1}{2}bh$ The area of a circle is 12 b 13 a b b) $\pi$ r<sup>2</sup> 13. The area of a rectangle is b а 14 d c) $S^2$ 14. The area of a triangle is 15 b The area of a square is d) *l* b 15. **Do You Know ?** D С d Area of the Rhombus = $d_1 d_2$ sq. units, 1) d where $d_1$ and $d_2$ are lengths of diagonals B 2) Area of the Quadrilateral $= d(h_1 + h_2)$ sq. units, h<sub>1</sub> where d is diagonal, $h_1$ and $h_2$ are the heights from the opposite vertex to the diagonal Area of Right angled triangle 3) $=\frac{1}{2}$ × product of $\perp$ r sides $=\frac{1}{2} \times AB \times AC$ height b а $=\frac{1}{2}$ ab sq uts A В Base

Varsity Education Management Pvt. Ltd.

56

**MATHEMATICS - V PRACTICE OBJECTIVE TEST** TRACK - A (NUMBER SYSTEM, ALGEBRA AND EXPONENTS & POWERS) **Straight Objective type questions :** The predecessor of greatest natural number is a) 1 b) 1000 c) 999999 d) does not exist 2. The sum of greatest negative integer and least positive integer is a) 0 b) 1 c) - 1d) 2 3. The least two digits perfect number is d) 99 a) 16 c) 56 b) 28 The variables alone (or) constants alone (or) their combinations by operation of multiplication (or) division are called a) constants b) variables c) terms d) exponents  $(-1)^{2015} =$ a) -2015b) 2015 c) 1 d) - 1If  $a \neq 0$  and  $b \neq 0$ , then  $\left(\frac{a}{b}\right)^n =$ b)  $\left(\frac{b}{a}\right)^n$ a)  $\left(\frac{a}{b}\right)^n$ d)  $\left(\frac{b}{a}\right)$ c)  $(ab)^n$ If x = 10, y = 9 and z = 3, then  $x^{z} + y^{z} =$ a) 1529 b) 1629 c) 1729 d) 1829 One or more than one correct answer type questions : Among the following a pair of twin primes is Γ b) (11,13) c) (71,73)d) (89,91) a) (5,7)The number 804264 is divisible by a) 2 b) 3 d) 8 c) 6 Statement (A): The division of any integer by zero is not defined. 10.

13 14 15 16 **1**7 18 19 20

Statement (B): The fractions obtained by multiplying both the numerator and denominator of a fraction by the same number are called equivalent fractions of given fraction.

a) Both A and B are true

1.

4

7.

8.

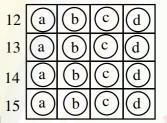
9.

- b) Both A and B are false
- c) A is true and B is false
- d) A is false and B is true

11. Assertion (A): 
$$\left(\frac{x^a}{x^b}\right)^c \times \left(\frac{x^b}{x^c}\right)^a \times \left(\frac{x^c}{x^a}\right)^b = 1$$
.

**Reason** (**R**) : 
$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$$
, where  $a, b \neq 0$ .

a) Both A and R are correct, and R is the correct explanation of A
b) Both A and R are correct, but R is not the correct explanation of A
c) A is correct and R is incorrect
d) A is incorrect and R is correct.


13 14 15 16 17 18 19 20

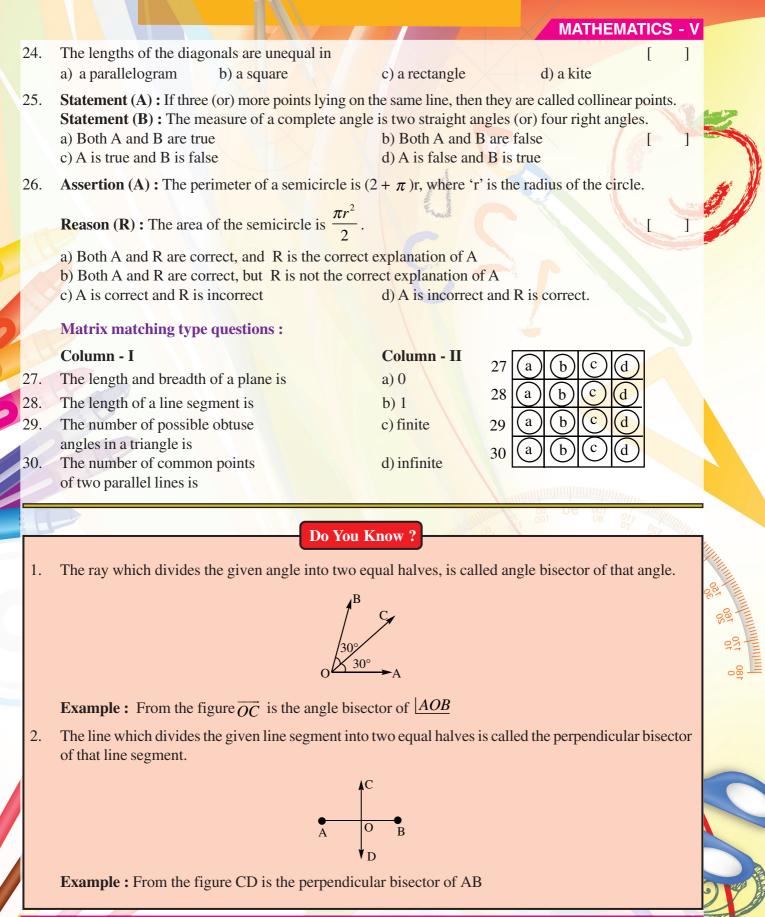
#### Matrix matching type questions :

#### Column - I

- 12. A natural number is
- 13. A perfect square number is
- 14. One of the factors of 6 xy is
- 15. An integer is

#### Column - II a) 1 b) 2 c) 3 d) 4




]

[

TRACK - B (GEOMETRY)

### **Straight Objective type questions :**

|             | 16. | If three or more lines para) parallel lines                                                 | ssing through the same po<br>b) coincident lines       | int, then they are called<br>c) concurrent lines | [ ]<br>d) non intersecting lines              |
|-------------|-----|---------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------|-----------------------------------------------|
|             | 17. | Among the following a a) 179°                                                               | reflex angle is<br>b) 180°                             | c) 181°                                          | d) 360°                                       |
|             | 18. | The measure of an angle a) 90°                                                              | e between two parallel line<br>b) 100°                 | es is<br>c) 180°                                 | [ ]                                           |
| 200<br>3.50 | 19. | The sum of the measure<br>a) 100°                                                           | s of three angles in a trian<br>b) 150°                | gle is<br>c) 180°                                | [ ]<br>d) 200°                                |
| 2           | 20. | The quadrilateral whose a) a rectangle                                                      | all sides are equal in leng<br>b) a square             | th and the measure of eac<br>c) a rhombus        | h angle 90° is [ ]<br>d) a kite               |
|             | 21. | A line intersecting a circ<br>a) a sector                                                   | le at two points is called<br>b) a tangent             | c) a secant                                      | d) an arc                                     |
|             | 22. | If 'd' is the diameter of a<br>a) $\pi d^2$                                                 | b) $\frac{\pi d^2}{2}$                                 | c) $\frac{\pi d^2}{4}$                           | $\begin{bmatrix} & \\ \\ \\ \\ \end{bmatrix}$ |
|             |     | One or more than one                                                                        | correct answer type que                                | estions :                                        |                                               |
|             | 23. | If $ \underline{A} = 45^\circ$ , $ \underline{B} = 90^\circ$ and a) a right angled triangle | nd $ \underline{C}  = 45^\circ$ , then $\triangle ABC$ | ' is<br>b) an equilateral triangle               | []                                            |
|             |     | c) an isosceles triangle                                                                    |                                                        | d) an isosceles right ang                        | led triangle                                  |
|             | 58  |                                                                                             |                                                        | Varsity Education                                | Management Pvt. Ltd.                          |



13 14 15 16 17 18 19 20

#### **PRIMITIVE PYTHAGOREAN TRIPLES**

#### **PYTHAGOREAN TRIPLES :**

Let x and y denote the lengths of the legs of a right triangle and z the length of its hypotenuse. Then, by the Pythagorean theorem, x, y and z satisfy the diophantine equation.

 $\mathbf{x}^2 + \mathbf{y}^2 = \mathbf{z}^2.$ 

The positive integral triplet x - y = z is called a "Pythagorean triple".

13 14 15 16 17 18 19 20

#### **PRIMITIVE PYTHAGOREAN TRIPLES :**

A Pythagorean triple x - y - z is primitive if (x, y, z) = 1.

For example, the Pythagorean triples 3 - 4 - 5 and 120 - 119 - 169 are primitive, where as 6 - 8 - 10 and 60 - 45 - 75 are not.

**Observe the following primitive Pythagorean triples patterns.** 

| 1.                                                       |                            |   |                               |   |                             |                     |
|----------------------------------------------------------|----------------------------|---|-------------------------------|---|-----------------------------|---------------------|
|                                                          | X                          |   | У                             |   | Z                           |                     |
|                                                          | 21                         |   | 220                           |   | 221                         |                     |
|                                                          | 201                        |   | 20200                         |   | 20201                       |                     |
|                                                          | 2001                       |   | 2002000                       |   | 2002001                     |                     |
|                                                          | 20001                      |   | 200020000                     |   | 200020001                   |                     |
|                                                          | 200001                     |   | 20000200000                   |   | 20000200001                 |                     |
|                                                          | 2000001                    |   | 2000002000000                 | ) | 2000002000001               |                     |
| 2.<br>2.<br>2.<br>2.<br>2.<br>2.<br>2.<br>2.<br>2.<br>2. | 41 <sup>2</sup> ·          | + | <b>840</b> <sup>2</sup>       | = | <b>841</b> <sup>2</sup>     |                     |
|                                                          |                            | + | 80400 <sup>2</sup>            | = | 80401 <sup>2</sup>          |                     |
| 902<br>1                                                 |                            | + | 8004000 <sup>2</sup>          | = | 8004001 <sup>2</sup>        |                     |
| 9                                                        | <b>40001</b> <sup>2</sup>  | + | 800040000 <sup>2</sup>        | = | 800040001 <sup>2</sup>      |                     |
|                                                          | <b>400001</b> <sup>2</sup> | + | 80000400000 <sup>2</sup>      | = | 80000400001 <sup>2</sup>    |                     |
|                                                          | 4000001 <sup>2</sup>       | + | 8000004000000 <sup>2</sup>    | = | 8000004000001 <sup>2</sup>  |                     |
| 3.                                                       | <b>69</b> <sup>2</sup>     | + | <b>260</b> <sup>2</sup>       | = | <b>269</b> <sup>2</sup>     |                     |
|                                                          | 609 <sup>2</sup>           | + | <b>20600</b> <sup>2</sup>     | = | <b>20609</b> <sup>2</sup>   |                     |
|                                                          | 6009 <sup>2</sup>          | + | <b>2006000</b> <sup>2</sup>   | = | <b>2006009</b> <sup>2</sup> |                     |
|                                                          | 60009 <sup>2</sup>         | + | <b>200060000</b> <sup>2</sup> | = | 200060009 <sup>2</sup>      |                     |
|                                                          | 600009 <sup>2</sup>        | + | 20000600000 <sup>2</sup>      | = | 20000600009 <sup>2</sup>    |                     |
| <u> </u>                                                 | 6000009 <sup>2</sup>       | + | 2000006000000 <sup>2</sup>    | = | 2000006000009 <sup>2</sup>  |                     |
| 60                                                       |                            |   |                               |   |                             | Management Pvt. Lto |

61

## GLOSSARY OF SYMBOLS

 13
 14
 15
 16
 17
 18
 19
 20

| Symbol | In Words             | Example                                                               | Meaning                                                          |                        |
|--------|----------------------|-----------------------------------------------------------------------|------------------------------------------------------------------|------------------------|
| AB     | Line segment "AB"    | ĀB                                                                    | The shortest path between A and B                                |                        |
| AB     | Ray "AB"             | AB                                                                    | The line that starts at A which passes through B and continuous. |                        |
| AB     | Line "AB"            | AB                                                                    | The line that passes through A and B.                            |                        |
| L      | Angle                | <u> <i>ABC</i></u> is 45°                                             | The angle formed by BA and BC is 45 degrees.                     |                        |
| Ł      | Right angle (90°)    | is 90°                                                                | A right angle is 90 degrees.                                     |                        |
| 0      | Degrees              | 360°                                                                  | makes a full circle.                                             |                        |
| Т      | Perpendicular        | $\overrightarrow{AB} \perp \overrightarrow{CD}$                       | The line AB is perpendicular to the line CD.                     |                        |
|        | Parallel             | $\overrightarrow{\mathrm{EF}} \parallel \overrightarrow{\mathrm{GH}}$ | The line EF is parallel to the line GH                           | 027                    |
| Δ      | Triangle             | $\Delta$ ABC has three sides                                          | Triangle ABC has three sides                                     | 071 071 081<br>071 081 |
| 211    | Congruent            | $\triangle ABC \cong \triangle DEF$ (same shape and size)             | Triangle ABC is congruent to triangle DEF                        |                        |
| ~      | Similar (same shape) | $\triangle$ ABC $\sim \triangle$ MNO                                  | Triangle ABC is similar to triangle MNO.                         | 0                      |
|        | Therefore a = b      | •• $b = a$                                                            | a equals to b, therefore b equals to a                           |                        |

62

## MEMORY MATHEMATICS

|                        | Number | Square | Cube  | Factorial           |
|------------------------|--------|--------|-------|---------------------|
|                        |        | $x^2$  | $x^3$ |                     |
|                        | x      |        |       | x!                  |
|                        | 1      | 1      | 1     | 1                   |
|                        | 2      | 4      | 8     | 2                   |
|                        | 3      | 9      | 27    | 6                   |
|                        | 4      | 16     | 64    | 24                  |
|                        | 5      | 25     | 125   | 120                 |
|                        | 6      | 36     | 216   | 720                 |
|                        | 7      | 49     | 343   | 5040                |
|                        | 8      | 64     | 512   | 40320               |
|                        | 9      | 81     | 729   | 362880              |
|                        | 10     | 100    | 1000  | 3628800             |
|                        | 11     | 121    | 1331  | 39916800            |
| 180 170 280 350 MILLIN | 12     | 144    | 1728  | 479001600           |
| 1111111111<br>260<br>3 | 13     | 169    | 2197  | 6227020800          |
| 170<br>170             | 14     | 196    | 2744  | 87178291200         |
| =_ <sup>86</sup> 0     | 15     | 225    | 3375  | 1307674368000       |
|                        | 16     | 256    | 4096  | 20922789888000      |
|                        | 17     | 289    | 4913  | 355687428096000     |
|                        | 18     | 324    | 832   | 6402373705728000    |
|                        | 19     | 361    | 6859  | 121645100408832000  |
| Ree                    | 20     | 400    | 8000  | 2432902008176640000 |

Varsity Education Management Pvt. Ltd.

1 2 3